forked from mindspore-Ecosystem/mindspore
!22359 add st for pynative synchronize
Merge pull request !22359 from chujinjin/add_st_for_pynative_synchronize
This commit is contained in:
commit
785e5fe6fd
|
@ -516,7 +516,7 @@ def _check_target_specific_cfgs(device, arg_key):
|
|||
enable_profiling=bool, profiling_options=str, enable_auto_mixed_precision=bool,
|
||||
enable_graph_kernel=bool, check_bprop=bool, max_device_memory=str, print_file_path=str,
|
||||
enable_sparse=bool, max_call_depth=int, env_config_path=str, graph_kernel_flags=str,
|
||||
save_compile_cache=bool, load_compile_cache=bool, grad_for_scalar=bool)
|
||||
save_compile_cache=bool, load_compile_cache=bool, grad_for_scalar=bool, pynative_synchronize=bool)
|
||||
def set_context(**kwargs):
|
||||
"""
|
||||
Set context for running environment.
|
||||
|
@ -544,14 +544,14 @@ def set_context(**kwargs):
|
|||
check_bprop print_file_path max_device_memory
|
||||
device_id enable_dump enable_graph_kernel
|
||||
device_target save_dump_path graph_kernel_flags
|
||||
enable_sparse enable_graph_kernel
|
||||
enable_sparse enable_graph_kernel pynative_synchronize
|
||||
max_call_depth enable_reduce_precision
|
||||
mode enable_profiling
|
||||
reserve_class_name_in_scope profiling_options
|
||||
save_graphs variable_memory_max_size
|
||||
save_graphs_path auto_tune_mode
|
||||
env_config_path graph_kernel_flags
|
||||
grad_for_scalar
|
||||
grad_for_scalar pynative_synchronize
|
||||
save_compile_cache
|
||||
load_compile_cache
|
||||
=========================== =========================== =================
|
||||
|
@ -663,6 +663,8 @@ def set_context(**kwargs):
|
|||
you should make sure the network has not been changed since the last execution. By now, we have
|
||||
not support automatically checking the changes yet. Default: False.
|
||||
This is an experimental prototype that is subject to change and/or deletion.
|
||||
pynative_synchronize (bool): Whether to enable asynchronous execution of the device in Pynative mode.
|
||||
Default: False.
|
||||
|
||||
Raises:
|
||||
ValueError: If input key is not an attribute in context.
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.get_next = P.GetNext([mstype.float32], [(1, 1)], 1, "test")
|
||||
|
||||
def construct(self, x1,):
|
||||
x = self.get_next()
|
||||
x = x + x1
|
||||
return x
|
||||
|
||||
def test_pynative_synchronize_true():
|
||||
context.set_context(pynative_synchronize=True)
|
||||
with pytest.raises(RuntimeError) as execinfo:
|
||||
x1 = np.random.randn(1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x1))
|
||||
print(output.asnumpy())
|
||||
assert "GetNext" in str(execinfo.value)
|
||||
|
||||
def test_pynative_synchronize_false():
|
||||
context.set_context(pynative_synchronize=False)
|
||||
with pytest.raises(RuntimeError) as execinfo:
|
||||
x1 = np.random.randn(1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x1))
|
||||
print(output.asnumpy())
|
||||
assert "Sync stream error" in str(execinfo.value)
|
Loading…
Reference in New Issue