add float64 support to reducemax grad

fix ci
This commit is contained in:
Peilin Wang 2021-03-04 17:48:25 -05:00
parent 569e679c66
commit 783c57c209
2 changed files with 63 additions and 0 deletions

View File

@ -35,6 +35,10 @@ MS_REG_GPU_KERNEL_ONE(
AbsGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
RealDiv,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
// fp32
MS_REG_GPU_KERNEL_ONE(

View File

@ -0,0 +1,59 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
def test_reduce_sum_grad():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.op = P.ReduceMax()
def construct(self, x1, x2):
return self.op(x1, x2)
class GradNet(nn.Cell):
def __init__(self, network):
super(GradNet, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, x1, x2, dy):
return self.grad(self.network)(x1, x2, dy)
net = Net()
grad_net = GradNet(net)
x1 = Tensor(np.array([[1, 2], [5, 4], [9, 16]]).astype(np.float32))
x2 = 1
dy = Tensor(np.array([2, 10, 1]).astype(np.float32))
out = grad_net(x1, x2, dy)
expected = np.array([[0, 2], [10, 0], [0, 1]])
np.testing.assert_allclose(out[0].asnumpy(), expected, rtol=1e-6)
x1 = Tensor(np.array([[9, 2], [4, 5], [1, 16]]).astype(np.float32))
x2 = 0
dy = Tensor(np.array([10, 11]).astype(np.float32))
out = grad_net(x1, 0, dy)
expected = np.array([[10, 0], [0, 0], [0, 11]])
np.testing.assert_allclose(out[0].asnumpy(), expected, rtol=1e-6)