forked from mindspore-Ecosystem/mindspore
parent
569e679c66
commit
783c57c209
|
@ -35,6 +35,10 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
AbsGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
RealDiv,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
|
||||
// fp32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
def test_reduce_sum_grad():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.ReduceMax()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
return self.op(x1, x2)
|
||||
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradNet, self).__init__()
|
||||
self.grad = C.GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, x2, dy):
|
||||
return self.grad(self.network)(x1, x2, dy)
|
||||
|
||||
net = Net()
|
||||
grad_net = GradNet(net)
|
||||
x1 = Tensor(np.array([[1, 2], [5, 4], [9, 16]]).astype(np.float32))
|
||||
x2 = 1
|
||||
dy = Tensor(np.array([2, 10, 1]).astype(np.float32))
|
||||
out = grad_net(x1, x2, dy)
|
||||
expected = np.array([[0, 2], [10, 0], [0, 1]])
|
||||
np.testing.assert_allclose(out[0].asnumpy(), expected, rtol=1e-6)
|
||||
|
||||
x1 = Tensor(np.array([[9, 2], [4, 5], [1, 16]]).astype(np.float32))
|
||||
x2 = 0
|
||||
dy = Tensor(np.array([10, 11]).astype(np.float32))
|
||||
out = grad_net(x1, 0, dy)
|
||||
expected = np.array([[10, 0], [0, 0], [0, 11]])
|
||||
np.testing.assert_allclose(out[0].asnumpy(), expected, rtol=1e-6)
|
Loading…
Reference in New Issue