add iou ops.

This commit is contained in:
linqingke 2020-07-23 17:02:46 +08:00
parent b606b84e6c
commit 7829bab811
13 changed files with 596 additions and 18 deletions

View File

@ -27,7 +27,7 @@ namespace kernel {
template <typename T, typename S> template <typename T, typename S>
class GatherNdGpuFwdKernel : public GpuKernel { class GatherNdGpuFwdKernel : public GpuKernel {
public: public:
GatherNdGpuFwdKernel() : dev_batch_strides_(nullptr), dev_batch_indices_(nullptr) {} GatherNdGpuFwdKernel() : dev_batch_strides_(nullptr), dev_batch_indices_(nullptr), memcpy_flag_(false) {}
~GatherNdGpuFwdKernel() { ~GatherNdGpuFwdKernel() {
if (dev_batch_strides_ != nullptr) { if (dev_batch_strides_ != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(dev_batch_strides_)); device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(dev_batch_strides_));
@ -48,12 +48,25 @@ class GatherNdGpuFwdKernel : public GpuKernel {
S *indices_addr = GetDeviceAddress<S>(inputs, 1); S *indices_addr = GetDeviceAddress<S>(inputs, 1);
T *output_addr = GetDeviceAddress<T>(outputs, 0); T *output_addr = GetDeviceAddress<T>(outputs, 0);
if (!memcpy_flag_) {
const size_t strides_len = sizeof(S) * batch_strides_.size();
const size_t indices_len = sizeof(S) * batch_indices_.size();
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(dev_batch_strides_, &batch_strides_[0], strides_len,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync failed in GatherNdGpuFwdKernel::Launch.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(dev_batch_indices_, &batch_indices_[0], indices_len,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync failed in GatherNdGpuFwdKernel::Launch.");
memcpy_flag_ = true;
}
GatherNd(input_addr, indices_addr, output_addr, dims_[0], dims_[1], dims_[2], dev_batch_strides_, GatherNd(input_addr, indices_addr, output_addr, dims_[0], dims_[1], dims_[2], dev_batch_strides_,
dev_batch_indices_, reinterpret_cast<cudaStream_t>(stream_ptr)); dev_batch_indices_, reinterpret_cast<cudaStream_t>(stream_ptr));
return true; return true;
} }
bool Init(const CNodePtr &kernel_node) override { bool Init(const CNodePtr &kernel_node) override {
InitResource(); InitResource();
memcpy_flag_ = false;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) { if (input_num != 2) {
MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but GatherNdGpuFwdKernel needs 2."; MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but GatherNdGpuFwdKernel needs 2.";
@ -77,25 +90,20 @@ class GatherNdGpuFwdKernel : public GpuKernel {
batch_indices_[i - 1] = batch_indices_[i] * input_shapes_[i]; batch_indices_[i - 1] = batch_indices_[i] * input_shapes_[i];
} }
size_t strides_len = sizeof(S) * batch_strides_.size(); const size_t strides_len = sizeof(S) * batch_strides_.size();
void *dev_batch_strides_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(strides_len); void *dev_batch_strides_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(strides_len);
if (dev_batch_strides_work == nullptr) { if (dev_batch_strides_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc dev_batch_strides_work, size: " << strides_len; MS_LOG(EXCEPTION) << "Failed to alloc dev_batch_strides_work, size: " << strides_len;
} }
dev_batch_strides_ = static_cast<S *>(dev_batch_strides_work); dev_batch_strides_ = static_cast<S *>(dev_batch_strides_work);
size_t indices_len = sizeof(S) * batch_indices_.size(); const size_t indices_len = sizeof(S) * batch_indices_.size();
void *dev_batch_indices_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(indices_len); void *dev_batch_indices_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(indices_len);
if (dev_batch_indices_work == nullptr) { if (dev_batch_indices_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc dev_batch_indices_work, size: " << indices_len; MS_LOG(EXCEPTION) << "Failed to alloc dev_batch_indices_work, size: " << indices_len;
} }
dev_batch_indices_ = static_cast<S *>(dev_batch_indices_work); dev_batch_indices_ = static_cast<S *>(dev_batch_indices_work);
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(dev_batch_strides_, &batch_strides_[0], strides_len, cudaMemcpyHostToDevice),
"cudaMemcpy failed in GatherNdGpuFwdKernel::Init.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(dev_batch_indices_, &batch_indices_[0], indices_len, cudaMemcpyHostToDevice),
"cudaMemcpy failed in GatherNdGpuFwdKernel::Init.");
InitSizeLists(); InitSizeLists();
return true; return true;
} }
@ -155,6 +163,7 @@ class GatherNdGpuFwdKernel : public GpuKernel {
S *dev_batch_strides_; S *dev_batch_strides_;
S *dev_batch_indices_; S *dev_batch_indices_;
bool memcpy_flag_;
}; };
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore

View File

@ -35,7 +35,8 @@ class ScatterNdGpuFwdKernel : public GpuKernel {
indices_stride_(nullptr), indices_stride_(nullptr),
work_shape_(nullptr), work_shape_(nullptr),
indices_dim_0_(0), indices_dim_0_(0),
indices_dim_1_(0) {} indices_dim_1_(0),
memcpy_flag_(false) {}
~ScatterNdGpuFwdKernel() { ~ScatterNdGpuFwdKernel() {
if (indices_stride_ != nullptr) { if (indices_stride_ != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(indices_stride_)); device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(indices_stride_));
@ -56,12 +57,25 @@ class ScatterNdGpuFwdKernel : public GpuKernel {
T *update = GetDeviceAddress<T>(inputs, 1); T *update = GetDeviceAddress<T>(inputs, 1);
T *output = GetDeviceAddress<T>(outputs, 0); T *output = GetDeviceAddress<T>(outputs, 0);
if (!memcpy_flag_) {
const size_t indices_len = sizeof(S) * vec_indices_stride_.size();
const size_t vec_work_len = sizeof(S) * vec_work_shape_.size();
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(indices_stride_, &vec_indices_stride_[0], indices_len,
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpy failed in ScatterNdGpuFwdKernel::Launch.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(work_shape_, &vec_work_shape_[0], vec_work_len, cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpy failed in ScatterNdGpuFwdKernel::Launch.");
memcpy_flag_ = true;
}
ScatterNd(indices, update, output, block_size_, input_size_, output_size_, indices_dim_0_, indices_dim_1_, ScatterNd(indices, update, output, block_size_, input_size_, output_size_, indices_dim_0_, indices_dim_1_,
indices_stride_, work_shape_, reinterpret_cast<cudaStream_t>(stream_ptr)); indices_stride_, work_shape_, reinterpret_cast<cudaStream_t>(stream_ptr));
return true; return true;
} }
bool Init(const CNodePtr &kernel_node) override { bool Init(const CNodePtr &kernel_node) override {
memcpy_flag_ = false;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) { if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but transpose needs 2 input."; MS_LOG(ERROR) << "Input number is " << input_num << ", but transpose needs 2 input.";
@ -81,25 +95,20 @@ class ScatterNdGpuFwdKernel : public GpuKernel {
GetSize(); GetSize();
size_t indices_len = sizeof(S) * vec_indices_stride_.size(); const size_t indices_len = sizeof(S) * vec_indices_stride_.size();
void *indices_stride_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(indices_len); void *indices_stride_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(indices_len);
if (indices_stride_work == nullptr) { if (indices_stride_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc indices_stride_work, size: " << indices_len; MS_LOG(EXCEPTION) << "Failed to alloc indices_stride_work, size: " << indices_len;
} }
indices_stride_ = static_cast<S *>(indices_stride_work); indices_stride_ = static_cast<S *>(indices_stride_work);
size_t vec_work_len = sizeof(S) * vec_work_shape_.size(); const size_t vec_work_len = sizeof(S) * vec_work_shape_.size();
void *work_shape_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(vec_work_len); void *work_shape_work = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(vec_work_len);
if (work_shape_work == nullptr) { if (work_shape_work == nullptr) {
MS_LOG(EXCEPTION) << "Failed to alloc work_shape_work, size: " << vec_work_len; MS_LOG(EXCEPTION) << "Failed to alloc work_shape_work, size: " << vec_work_len;
} }
work_shape_ = static_cast<S *>(work_shape_work); work_shape_ = static_cast<S *>(work_shape_work);
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpy(indices_stride_, &vec_indices_stride_[0], indices_len, cudaMemcpyHostToDevice),
"cudaMemcpy failed in ScatterNdGpuFwdKernel::Init.");
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(work_shape_, &vec_work_shape_[0], vec_work_len, cudaMemcpyHostToDevice),
"cudaMemcpy failed in ScatterNdGpuFwdKernel::Init.");
InitSizeLists(); InitSizeLists();
return true; return true;
@ -168,6 +177,7 @@ class ScatterNdGpuFwdKernel : public GpuKernel {
S *work_shape_; S *work_shape_;
size_t indices_dim_0_; size_t indices_dim_0_;
size_t indices_dim_1_; size_t indices_dim_1_;
bool memcpy_flag_;
}; };
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore

View File

@ -0,0 +1,45 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/check_valid_impl.cuh"
template <typename T, typename S>
__global__ void CheckValidKernel(const size_t size, const T *box, const T *img_metas, S *valid) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
const size_t left_x = i * 4;
const size_t left_y = i * 4 + 1;
const size_t right_x = i * 4 + 2;
const size_t right_y = i * 4 + 3;
S valid_flag = false;
valid_flag |= !(box[left_x] >= 0.f);
valid_flag |= !(box[left_y] >= 0.f);
valid_flag |= !(img_metas[0] * img_metas[2] - 1.f >= box[right_x]);
valid_flag |= !(img_metas[1] * img_metas[2] - 1.f >= box[right_y]);
valid[i] = !valid_flag;
}
return;
}
template <typename T, typename S>
void CheckValid(const size_t &size, const T *box, const T *img_metas, S *valid, cudaStream_t cuda_stream) {
CheckValidKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, box, img_metas, valid);
}
template void CheckValid(const size_t &size, const float *box, const float *img_metas, bool *valid,
cudaStream_t cuda_stream);

View File

@ -0,0 +1,25 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_CHECK_VALID_IMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_CHECK_VALID_IMPL_H_
#include "runtime/device/gpu/cuda_common.h"
template <typename T, typename S>
void CheckValid(const size_t &size, const T *box, const T *img_metas, S *valid, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_CHECK_VALID_IMPL_H_

View File

@ -0,0 +1,72 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/iou_impl.cuh"
template <typename T>
__device__ T CoordinateMax(const T a, const T b) {
return (a > b ? a : b);
}
template <typename T>
__device__ T CoordinateMin(const T a, const T b) {
return (a < b ? a : b);
}
template <typename T>
__global__ void IOUKernel(const size_t size, const T *box1, const T *box2, T *iou_results, const size_t mode,
const size_t input_len_0) {
T location_coordinate[IOU_LOCATION_NUM][IOU_DIMENSION];
T overlaps_coordinate[IOU_DIMENSION];
const T epsilon = 1e-10;
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
for (size_t j = 0; j < IOU_DIMENSION; j++) {
location_coordinate[0][j] = box1[(i % input_len_0) * IOU_DIMENSION + j];
location_coordinate[1][j] = box2[(i / input_len_0) * IOU_DIMENSION + j];
}
overlaps_coordinate[0] = CoordinateMax(location_coordinate[0][0], location_coordinate[1][0]);
overlaps_coordinate[1] = CoordinateMax(location_coordinate[0][1], location_coordinate[1][1]);
overlaps_coordinate[2] = CoordinateMin(location_coordinate[0][2], location_coordinate[1][2]);
overlaps_coordinate[3] = CoordinateMin(location_coordinate[0][3], location_coordinate[1][3]);
T overlaps_w = CoordinateMax(0.f, overlaps_coordinate[2] - overlaps_coordinate[0] + 1);
T overlaps_h = CoordinateMax(0.f, overlaps_coordinate[3] - overlaps_coordinate[1] + 1);
T overlaps = overlaps_w * overlaps_h;
T area1 = (location_coordinate[0][2] - location_coordinate[0][0] + 1) * (location_coordinate[0][3] -
location_coordinate[0][1] + 1);
if (mode == 0) {
T area2 = (location_coordinate[1][2] - location_coordinate[1][0] + 1) * (location_coordinate[1][3] -
location_coordinate[1][1] + 1);
iou_results[i] = overlaps / (area1 + area2 - overlaps + epsilon);
} else {
iou_results[i] = overlaps / (area1 + epsilon);
}
}
return;
}
template <typename T>
void IOU(const size_t &size, const T *box1, const T *box2, T *iou_results, const size_t &mode,
const size_t &input_len_0, cudaStream_t cuda_stream) {
IOUKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, box1, box2, iou_results, mode, input_len_0);
}
template void IOU(const size_t &size, const float *box1, const float *box2, float *iou_results, const size_t &mode,
const size_t &input_len_0, cudaStream_t cuda_stream);

View File

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_IOU_IMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_IOU_IMPL_H_
#include "runtime/device/gpu/cuda_common.h"
#define IOU_LOCATION_NUM 2
#define IOU_DIMENSION 4
template <typename T>
void IOU(const size_t &size, const T *box1, const T *box2, T *iou_results, const size_t &mode,
const size_t &input_len_0, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_IOU_IMPL_H_

View File

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/other/check_valid_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(
CheckValid,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
CheckValidGpuKernel, float, bool)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,106 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_OTHER_CHECK_VALID_GPU_KERNEL_H
#define MINDSPORE_CCSRC_KERNEL_GPU_OTHER_CHECK_VALID_GPU_KERNEL_H
#include <vector>
#include "backend/kernel_compiler/gpu/cuda_impl/check_valid_impl.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T, typename S>
class CheckValidGpuKernel : public GpuKernel {
public:
CheckValidGpuKernel() : anchor_boxes_size_(0), img_metas_size_(0), valid_size_(0) {}
~CheckValidGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
VARIABLE_NOT_USED(workspace);
T *anchor_boxes_addr = GetDeviceAddress<T>(inputs, 0);
T *img_metas_addr = GetDeviceAddress<T>(inputs, 1);
S *valid_addr = GetDeviceAddress<S>(outputs, 0);
const size_t coordinate = 4;
const size_t block_size = inputs[0]->size / sizeof(T);
if ((block_size % coordinate) != 0) {
MS_LOG(ERROR) << "The size of the box must be a multiple of 4.";
return false;
}
const size_t size = block_size / coordinate;
CheckValid(size, anchor_boxes_addr, img_metas_addr, valid_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but CheckValid needs 2 inputs.";
return false;
}
anchor_boxes_size_ = sizeof(T);
img_metas_size_ = sizeof(T);
valid_size_ = sizeof(S);
auto anchor_boxes_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < anchor_boxes_shape.size(); i++) {
anchor_boxes_size_ *= anchor_boxes_shape[i];
}
auto img_metas_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
for (size_t i = 0; i < img_metas_shape.size(); i++) {
img_metas_size_ *= img_metas_shape[i];
}
auto valid_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < valid_shape.size(); i++) {
valid_size_ *= valid_shape[i];
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(anchor_boxes_size_);
input_size_list_.push_back(img_metas_size_);
output_size_list_.push_back(valid_size_);
}
private:
size_t anchor_boxes_size_;
size_t img_metas_size_;
size_t valid_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_OTHER_CHECK_VALID_GPU_KERNEL_H

View File

@ -0,0 +1,25 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/other/iou_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
IOU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
IOUGpuKernel, float)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,122 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_OTHER_IOU_GPU_KERNEL_H
#define MINDSPORE_CCSRC_KERNEL_GPU_OTHER_IOU_GPU_KERNEL_H
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/cuda_impl/iou_impl.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class IOUGpuKernel : public GpuKernel {
public:
IOUGpuKernel() : gt_boxes_size_(0), anchor_boxes_size_(0), iou_size_(0), mode_(0) {}
~IOUGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
VARIABLE_NOT_USED(workspace);
T *gt_boxes_addr = GetDeviceAddress<T>(inputs, 0);
T *anchor_boxes_addr = GetDeviceAddress<T>(inputs, 1);
T *iou_addr = GetDeviceAddress<T>(outputs, 0);
const size_t coordinate = 4;
const size_t block_size_0 = inputs[0]->size / sizeof(T);
const size_t block_size_1 = inputs[1]->size / sizeof(T);
if ((block_size_0 % coordinate) != 0 || (block_size_1 % coordinate) != 0) {
MS_LOG(ERROR) << "The size of the box must be a multiple of 4.";
return false;
}
const size_t input_len_0 = block_size_0 / coordinate;
const size_t input_len_1 = block_size_1 / coordinate;
IOU(input_len_0 * input_len_1, gt_boxes_addr, anchor_boxes_addr, iou_addr, mode_, input_len_0,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but IOU needs 2 inputs.";
return false;
}
gt_boxes_size_ = sizeof(T);
anchor_boxes_size_ = sizeof(T);
iou_size_ = sizeof(T);
auto gt_boxes_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < gt_boxes_shape.size(); i++) {
gt_boxes_size_ *= gt_boxes_shape[i];
}
auto anchor_boxes_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
for (size_t i = 0; i < anchor_boxes_shape.size(); i++) {
anchor_boxes_size_ *= anchor_boxes_shape[i];
}
auto iou_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < iou_shape.size(); i++) {
iou_size_ *= iou_shape[i];
}
InitSizeLists();
std::string mode = GetAttr<std::string>(kernel_node, "mode");
if (mode == "iou") {
mode_ = 0;
} else if (mode == "iof") {
mode_ = 1;
} else {
MS_LOG(ERROR) << "Mode only support 'iou' or 'iof'.";
return false;
}
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(gt_boxes_size_);
input_size_list_.push_back(anchor_boxes_size_);
output_size_list_.push_back(iou_size_);
}
private:
size_t gt_boxes_size_;
size_t anchor_boxes_size_;
size_t iou_size_;
size_t mode_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_OTHER_IOU_GPU_KERNEL_H

View File

@ -262,8 +262,6 @@ class IOU(PrimitiveWithInfer):
return iou return iou
def infer_dtype(self, anchor_boxes, gt_boxes): def infer_dtype(self, anchor_boxes, gt_boxes):
args = {"anchor_boxes": anchor_boxes, "gt_boxes": gt_boxes}
validator.check_tensor_type_same(args, (mstype.float16,), self.name)
return anchor_boxes return anchor_boxes

View File

@ -0,0 +1,54 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetCheckValid(nn.Cell):
def __init__(self):
super(NetCheckValid, self).__init__()
self.valid = P.CheckValid()
def construct(self, anchor, image_metas):
return self.valid(anchor, image_metas)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_boundingbox_decode():
anchor = np.array([[50, 0, 100, 700], [-2, 2, 8, 100], [10, 20, 300, 2000]], np.float32)
image_metas = np.array([768, 1280, 1], np.float32)
anchor_box = Tensor(anchor, mindspore.float32)
image_metas_box = Tensor(image_metas, mindspore.float32)
expect = np.array([True, False, False], np.bool_)
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
boundingbox_decode = NetCheckValid()
output = boundingbox_decode(anchor_box, image_metas_box)
diff = (output.asnumpy() == expect)
assert (diff == 1).all()
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
boundingbox_decode = NetCheckValid()
output = boundingbox_decode(anchor_box, image_metas_box)
diff = (output.asnumpy() == expect)
assert (diff == 1).all()

View File

@ -0,0 +1,57 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetIOU(nn.Cell):
def __init__(self, mode):
super(NetIOU, self).__init__()
self.encode = P.IOU(mode=mode)
def construct(self, anchor, groundtruth):
return self.encode(anchor, groundtruth)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_iou():
pos1 = [101, 169, 246, 429]
pos2 = [121, 138, 304, 374]
mode = "iou"
pos1_box = Tensor(np.array(pos1).reshape(1, 4), mindspore.float32)
pos2_box = Tensor(np.array(pos2).reshape(1, 4), mindspore.float32)
expect_result = np.array(0.46551168, np.float32)
error = np.ones(shape=[1]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
overlaps = NetIOU(mode)
output = overlaps(pos1_box, pos2_box)
diff = output.asnumpy() - expect_result
assert np.all(abs(diff) < error)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
overlaps = NetIOU(mode)
output = overlaps(pos1_box, pos2_box)
diff = output.asnumpy() - expect_result
assert np.all(abs(diff) < error)