forked from mindspore-Ecosystem/mindspore
!258 add_minimum_distributed_op
Merge pull request !258 from lichen/add_minimum_distributed_op
This commit is contained in:
commit
77725e81a4
|
@ -114,6 +114,7 @@ REGISTER(DropoutDoMaskInfo);
|
||||||
REGISTER(ReshapeInfo);
|
REGISTER(ReshapeInfo);
|
||||||
REGISTER(FloorDivInfo);
|
REGISTER(FloorDivInfo);
|
||||||
REGISTER(MaximumInfo);
|
REGISTER(MaximumInfo);
|
||||||
|
REGISTER(MinimumInfo);
|
||||||
REGISTER(CastInfo);
|
REGISTER(CastInfo);
|
||||||
REGISTER(GreaterInfo);
|
REGISTER(GreaterInfo);
|
||||||
REGISTER(SparseSoftmaxCrossEntropyWithLogitsInfo);
|
REGISTER(SparseSoftmaxCrossEntropyWithLogitsInfo);
|
||||||
|
|
|
@ -50,6 +50,14 @@ class MaximumInfo : public ArithmeticBase {
|
||||||
: ArithmeticBase(name, inputs_shape, outputs_shape, attrs) {}
|
: ArithmeticBase(name, inputs_shape, outputs_shape, attrs) {}
|
||||||
~MaximumInfo() override = default;
|
~MaximumInfo() override = default;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class MinimumInfo : public ArithmeticBase {
|
||||||
|
public:
|
||||||
|
MinimumInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
|
||||||
|
const PrimitiveAttrs& attrs)
|
||||||
|
: ArithmeticBase(name, inputs_shape, outputs_shape, attrs) {}
|
||||||
|
~MinimumInfo() override = default;
|
||||||
|
};
|
||||||
} // namespace parallel
|
} // namespace parallel
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
|
|
||||||
|
|
|
@ -186,6 +186,7 @@ constexpr char LOG[] = "Log";
|
||||||
constexpr char SIGMOID[] = "Sigmoid";
|
constexpr char SIGMOID[] = "Sigmoid";
|
||||||
constexpr char POW[] = "Pow";
|
constexpr char POW[] = "Pow";
|
||||||
constexpr char MAXIMUM[] = "Maximum";
|
constexpr char MAXIMUM[] = "Maximum";
|
||||||
|
constexpr char MINIMUM[] = "Minimum";
|
||||||
constexpr char EQUAL[] = "Equal";
|
constexpr char EQUAL[] = "Equal";
|
||||||
constexpr char NOT_EQUAL[] = "NotEqual";
|
constexpr char NOT_EQUAL[] = "NotEqual";
|
||||||
constexpr char LOGICALNOT[] = "LogicalNot";
|
constexpr char LOGICALNOT[] = "LogicalNot";
|
||||||
|
|
|
@ -93,6 +93,7 @@ std::vector<std::string> splittable_op_ = {MATMUL,
|
||||||
SIGMOID,
|
SIGMOID,
|
||||||
POW,
|
POW,
|
||||||
MAXIMUM,
|
MAXIMUM,
|
||||||
|
MINIMUM,
|
||||||
EQUAL,
|
EQUAL,
|
||||||
NOT_EQUAL,
|
NOT_EQUAL,
|
||||||
LOGICALNOT,
|
LOGICALNOT,
|
||||||
|
|
|
@ -54,11 +54,10 @@ def test_matmul_equal():
|
||||||
out = self.equal(out, b)
|
out = self.equal(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 2), (2, 2))
|
strategy1 = ((2, 2), (2, 2))
|
||||||
strategy2 = ((4, 2), (4, 2))
|
strategy2 = ((4, 2), (4, 2))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
|
||||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
@ -78,11 +77,10 @@ def test_matmul_not_equal():
|
||||||
out = self.notequal(out, b)
|
out = self.notequal(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 2), (2, 2))
|
strategy1 = ((2, 2), (2, 2))
|
||||||
strategy2 = ((4, 2), (4, 2))
|
strategy2 = ((4, 2), (4, 2))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
|
||||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
@ -102,11 +100,10 @@ def test_matmul_not_equal_repeated_calculation():
|
||||||
out = self.notequal(out, b)
|
out = self.notequal(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 2), (2, 2))
|
strategy1 = ((2, 2), (2, 2))
|
||||||
strategy2 = ((4, 1), (4, 1))
|
strategy2 = ((4, 1), (4, 1))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
|
||||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
@ -126,11 +123,10 @@ def test_matmul_maximum():
|
||||||
out = self.maximum(out, b)
|
out = self.maximum(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 2), (2, 2))
|
strategy1 = ((2, 2), (2, 2))
|
||||||
strategy2 = ((4, 2), (4, 2))
|
strategy2 = ((4, 2), (4, 2))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
|
||||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
@ -150,11 +146,10 @@ def test_matmul_maximum_broadcast():
|
||||||
out = self.maximum(out, b)
|
out = self.maximum(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 2), (2, 2))
|
strategy1 = ((2, 2), (2, 2))
|
||||||
strategy2 = ((4, 2), (2, ))
|
strategy2 = ((4, 2), (2, ))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
|
||||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
@ -174,11 +169,100 @@ def test_matmul_maximum_broadcast2():
|
||||||
out = self.maximum(out, b)
|
out = self.maximum(out, b)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
strategy1 = ((2, 4), (4, 1))
|
strategy1 = ((2, 4), (4, 1))
|
||||||
strategy2 = ((4, 1), (1, 2))
|
strategy2 = ((4, 1), (1, 2))
|
||||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
||||||
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||||
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
||||||
|
_executor.compile(net, x, y, b)
|
||||||
|
|
||||||
|
|
||||||
|
def test_matmul_minimum():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, strategy1, strategy2):
|
||||||
|
super().__init__()
|
||||||
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
||||||
|
self.minimum = P.Minimum().set_strategy(strategy2)
|
||||||
|
|
||||||
|
def construct(self, x, y, b):
|
||||||
|
out = self.matmul(x, y)
|
||||||
|
out = self.minimum(out, b)
|
||||||
|
return out
|
||||||
|
|
||||||
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
|
strategy1 = ((2, 2), (2, 2))
|
||||||
|
strategy2 = ((4, 2), (4, 2))
|
||||||
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
|
|
||||||
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||||
|
_executor.compile(net, x, y, b)
|
||||||
|
|
||||||
|
|
||||||
|
def test_matmul_minimum_broadcast():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, strategy1, strategy2):
|
||||||
|
super().__init__()
|
||||||
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
||||||
|
self.minimum = P.Maximum().set_strategy(strategy2)
|
||||||
|
|
||||||
|
def construct(self, x, y, b):
|
||||||
|
out = self.matmul(x, y)
|
||||||
|
out = self.minimum(out, b)
|
||||||
|
return out
|
||||||
|
|
||||||
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
|
strategy1 = ((2, 2), (2, 2))
|
||||||
|
strategy2 = ((4, 2), (2, ))
|
||||||
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
|
|
||||||
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||||
|
b = Tensor(np.ones([64]), dtype=ms.float32)
|
||||||
|
_executor.compile(net, x, y, b)
|
||||||
|
|
||||||
|
|
||||||
|
def test_matmul_minimum_broadcast2():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, strategy1, strategy2):
|
||||||
|
super().__init__()
|
||||||
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
||||||
|
self.minimum = P.Minimum().set_strategy(strategy2)
|
||||||
|
|
||||||
|
def construct(self, x, y, b):
|
||||||
|
out = self.matmul(x, y)
|
||||||
|
out = self.minimum(out, b)
|
||||||
|
return out
|
||||||
|
|
||||||
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||||
|
strategy1 = ((2, 4), (4, 1))
|
||||||
|
strategy2 = ((4, 1), (1, 2))
|
||||||
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||||
|
|
||||||
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||||
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
||||||
|
_executor.compile(net, x, y, b)
|
||||||
|
|
||||||
|
|
||||||
|
def test_matmul_minimum_auto_parallel():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.matmul = P.MatMul()
|
||||||
|
self.minimum = P.Minimum()
|
||||||
|
|
||||||
|
def construct(self, x, y, b):
|
||||||
|
out = self.matmul(x, y)
|
||||||
|
out = self.minimum(out, b)
|
||||||
|
return out
|
||||||
|
|
||||||
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
|
||||||
|
net = GradWrap(NetWithLoss(Net()))
|
||||||
|
|
||||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||||
|
|
Loading…
Reference in New Issue