forked from mindspore-Ecosystem/mindspore
fix ub-fusion
This commit is contained in:
parent
95212b55a0
commit
7755a54452
|
@ -81,6 +81,7 @@
|
|||
#include "backend/optimizer/ascend/buffer_fusion/conv_single_in_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/conv_double_in_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/matmul_eltwise_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/matmul_confusiontranspose_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/depthwiseconv_eltwise_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/bnupdate_eltwise_fusion_pass.h"
|
||||
#include "backend/optimizer/ascend/buffer_fusion/bnupdate_eltwise_eltwise_fusion_pass.h"
|
||||
|
@ -504,6 +505,7 @@ void AscendBackendUBFusionOptimization(const std::shared_ptr<session::KernelGrap
|
|||
ub_fusion_pm->AddPass(std::make_shared<MultiOutputFusionPass>(fusion_id_allocator));
|
||||
ub_fusion_pm->AddPass(std::make_shared<EltwiseFusionPass>(fusion_id_allocator));
|
||||
ub_fusion_pm->AddPass(std::make_shared<DepthwiseConvEltwiseFusionPass>(fusion_id_allocator));
|
||||
ub_fusion_pm->AddPass(std::make_shared<MatmulConfusionTranposeFusionPass>(fusion_id_allocator));
|
||||
ub_fusion_pm->AddPass(std::make_shared<UbPatternFusion>());
|
||||
optimizer->AddPassManager(ub_fusion_pm);
|
||||
(void)optimizer->Optimize(kernel_graph);
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(save_graphs=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.matmul = P.MatMul()
|
||||
self.transpose = P.Transpose()
|
||||
self.reshape = P.Reshape()
|
||||
self.bias_add = P.BiasAdd()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
res = self.matmul(x, y)
|
||||
res = self.bias_add(res, z)
|
||||
res = self.reshape(res, (24, 512, 16, 64))
|
||||
res = self.transpose(res, (0, 2, 1, 3))
|
||||
return res
|
||||
|
||||
|
||||
def test_net():
|
||||
x = Tensor(np.ones(shape=[12288, 1024]), mindspore.float16)
|
||||
y = Tensor(np.ones(shape=[1024, 1024]), mindspore.float16)
|
||||
z = Tensor(np.ones(shape=[1024]), mindspore.float16)
|
||||
net = Net()
|
||||
output = net(x, y, z)
|
||||
print("result", output.asnumpy())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_net()
|
Loading…
Reference in New Issue