forked from mindspore-Ecosystem/mindspore
!26028 [feat] [assistant] [I48OAM] MulNoNan with dynamic infer shape
Merge pull request !26028 from 郑鹏飞/mulnonan_1
This commit is contained in:
commit
76bec49d75
|
@ -54,6 +54,7 @@ constexpr auto kNotEqual = "NotEqual";
|
|||
constexpr auto kNeg = "Neg";
|
||||
constexpr auto kSub = "Sub";
|
||||
constexpr auto kMul = "Mul";
|
||||
constexpr auto kMulNoNan = "MulNoNan";
|
||||
constexpr auto kRealDiv = "RealDiv";
|
||||
constexpr auto kReciprocal = "Reciprocal";
|
||||
constexpr auto kLog = "Log";
|
||||
|
@ -533,6 +534,7 @@ inline const PrimitivePtr kPrimSin = std::make_shared<Primitive>("Sin");
|
|||
inline const PrimitivePtr kPrimCos = std::make_shared<Primitive>(kCos);
|
||||
inline const PrimitivePtr kPrimSub = std::make_shared<Primitive>(kSub);
|
||||
inline const PrimitivePtr kPrimMul = std::make_shared<Primitive>(kMul);
|
||||
inline const PrimitivePtr kPrimMulNoNan = std::make_shared<Primitive>(kMulNoNan);
|
||||
inline const PrimitivePtr kPrimDiv = std::make_shared<Primitive>("Div");
|
||||
inline const PrimitivePtr kPrimMod = std::make_shared<Primitive>("Mod");
|
||||
inline const PrimitivePtr kPrimFloor = std::make_shared<Primitive>("Floor");
|
||||
|
|
|
@ -0,0 +1,83 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/mulnonan.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr MulNoNanInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
return BroadCastInferShape(prim_name, input_args);
|
||||
}
|
||||
|
||||
TypePtr MulNoNanInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
auto op_name = prim->name();
|
||||
const int64_t kInputNum = 2;
|
||||
(void)CheckAndConvertUtils::CheckInteger("input number", SizeToLong(input_args.size()), kGreaterEqual, kInputNum,
|
||||
op_name);
|
||||
std::map<std::string, TypePtr> types;
|
||||
(void)types.emplace("x", input_args[0]->BuildType());
|
||||
(void)types.emplace("y", input_args[1]->BuildType());
|
||||
auto type_x = input_args[0]->BuildType();
|
||||
auto type_y = input_args[1]->BuildType();
|
||||
MS_EXCEPTION_IF_NULL(type_x);
|
||||
MS_EXCEPTION_IF_NULL(type_y);
|
||||
if (type_x->isa<Complex>() || type_y->isa<Complex>()) {
|
||||
if (type_x->type_id() == kNumberTypeComplex64 && type_y->type_id() == kNumberTypeComplex64) {
|
||||
return type_x;
|
||||
} else if (type_x->type_id() == kNumberTypeComplex64 && type_y->type_id() == kNumberTypeFloat32) {
|
||||
return type_x;
|
||||
} else if (type_x->type_id() == kNumberTypeComplex128 && type_y->type_id() == kNumberTypeComplex128) {
|
||||
return type_x;
|
||||
} else if (type_x->type_id() == kNumberTypeComplex128 && type_y->type_id() == kNumberTypeFloat64) {
|
||||
return type_x;
|
||||
} else if (type_x->type_id() == kNumberTypeFloat32 && type_y->type_id() == kNumberTypeComplex64) {
|
||||
return type_y;
|
||||
} else if (type_x->type_id() == kNumberTypeFloat64 && type_y->type_id() == kNumberTypeComplex128) {
|
||||
return type_y;
|
||||
} else {
|
||||
MS_EXCEPTION(TypeError)
|
||||
<< "Complex math binary op expecting Tensor [complex64, complex64],[complex64, float32], [float32, "
|
||||
"complex64],[complex128, complex128],[complex128, float64], [float64, complex128], but got["
|
||||
<< type_x->ToString() << ", " << type_y->ToString() << "].";
|
||||
}
|
||||
}
|
||||
return CheckAndConvertUtils::CheckTensorTypeSame(types, common_valid_types_with_complex, prim->name());
|
||||
}
|
||||
} // namespace
|
||||
|
||||
AbstractBasePtr MulNoNanInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto infer_type = MulNoNanInferType(primitive, input_args);
|
||||
auto infer_shape = MulNoNanInferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(infer_shape, infer_type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(MulNoNan, prim::kPrimMulNoNan, MulNoNanInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,44 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_MULNONAN_H_
|
||||
#define MINDSPORE_CORE_OPS_MULNONAN_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "ops/primitive_c.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameMulNoNan = prim::kMulNoNan;
|
||||
class MulNoNan : public PrimitiveC {
|
||||
public:
|
||||
MulNoNan() : PrimitiveC(kNameMulNoNan) { InitIOName({"x", "y"}, {"output"}); }
|
||||
explicit MulNoNan(const std::string k_name) : PrimitiveC(k_name) { InitIOName({"x", "y"}, {"output"}); }
|
||||
~MulNoNan() = default;
|
||||
MS_DECLARE_PARENT(MulNoNan, PrimitiveC);
|
||||
void Init() {}
|
||||
};
|
||||
AbstractBasePtr MulNoNanInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using kPrimMulNoNanPtr = std::shared_ptr<MulNoNan>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_MULNONAN_H_
|
|
@ -476,6 +476,7 @@ from .nll_loss_grad import _nll_loss_grad_tbe
|
|||
from .masked_fill import _masked_fill_tbe
|
||||
from .mish import _mish_tbe
|
||||
from .mul_no_nan import _mul_no_nan_tbe
|
||||
from .mul_no_nan_ds import _mul_no_nan_ds_tbe
|
||||
from .selu import _selu_tbe
|
||||
from .centralization import _centralization_tbe
|
||||
from .exp_ds import _exp_ds_tbe
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""MulNoNan op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
mul_no_nan_op_info = TBERegOp("MulNoNan") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("mul_no_nan.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("mul_no_nan") \
|
||||
.partial_flag(True) \
|
||||
.dynamic_shape(True) \
|
||||
.input(0, "x1", False, "required", "all") \
|
||||
.input(1, "x2", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.op_pattern("broadcast") \
|
||||
.dtype_format(DataType.F16_None, DataType.F16_None, DataType.F16_None) \
|
||||
.dtype_format(DataType.F32_None, DataType.F32_None, DataType.F32_None) \
|
||||
.dtype_format(DataType.I32_None, DataType.I32_None, DataType.I32_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(mul_no_nan_op_info)
|
||||
def _mul_no_nan_ds_tbe():
|
||||
"""MulNoNan TBE register"""
|
||||
return
|
|
@ -2788,16 +2788,6 @@ class MulNoNan(_MathBinaryOp):
|
|||
"""Initialize _BinaryOp"""
|
||||
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
|
||||
|
||||
def infer_value(self, x, y):
|
||||
if x is not None and y is not None:
|
||||
x = x.asnumpy()
|
||||
y = y.asnumpy()
|
||||
with np.errstate(divide='ignore', invalid='ignore'):
|
||||
out = np.multiply(x, y)
|
||||
out[y == 0] = 0
|
||||
return out
|
||||
return None
|
||||
|
||||
|
||||
class FloorDiv(Primitive):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue