forked from mindspore-Ecosystem/mindspore
fix voc/coco docstring problem
This commit is contained in:
parent
fafdfa9a03
commit
741154b9b9
|
@ -4036,8 +4036,8 @@ class VOCDataset(MappableDataset):
|
|||
A source dataset for reading and parsing VOC dataset.
|
||||
|
||||
The generated dataset has two columns :
|
||||
task='Detection' : ['image', 'annotation'].
|
||||
task='Segmentation' : ['image', 'target']
|
||||
task='Detection' : ['image', 'annotation'];
|
||||
task='Segmentation' : ['image', 'target'].
|
||||
The shape of both column 'image' and 'target' is [image_size] if decode flag is False, or [H, W, C]
|
||||
otherwise.
|
||||
The type of both tensor 'image' and 'target' is uint8.
|
||||
|
@ -4072,20 +4072,20 @@ class VOCDataset(MappableDataset):
|
|||
- False
|
||||
- not allowed
|
||||
|
||||
Citation of VOC dataset.
|
||||
Citation of VOC dataset.
|
||||
|
||||
.. code-block::
|
||||
|
||||
@article{Everingham10,
|
||||
author = {Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.},
|
||||
title = {The Pascal Visual Object Classes (VOC) Challenge},
|
||||
journal = {International Journal of Computer Vision},
|
||||
volume = {88},
|
||||
year = {2010},
|
||||
number = {2},
|
||||
month = {jun},
|
||||
pages = {303--338},
|
||||
biburl = {http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.html#bibtex},
|
||||
author = {Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.},
|
||||
title = {The Pascal Visual Object Classes (VOC) Challenge},
|
||||
journal = {International Journal of Computer Vision},
|
||||
volume = {88},
|
||||
year = {2010},
|
||||
number = {2},
|
||||
month = {jun},
|
||||
pages = {303--338},
|
||||
biburl = {http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.html#bibtex},
|
||||
howpublished = {http://host.robots.ox.ac.uk/pascal/VOC/voc{year}/index.html},
|
||||
description = {The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual
|
||||
object category recognition and detection, providing the vision and machine
|
||||
|
@ -4096,8 +4096,8 @@ class VOCDataset(MappableDataset):
|
|||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
task (str): Set the task type of reading voc data, now only support "Segmentation" or "Detection"
|
||||
(default="Segmentation")
|
||||
mode(str): Set the data list txt file to be readed (default="train")
|
||||
(default="Segmentation").
|
||||
mode (str): Set the data list txt file to be readed (default="train").
|
||||
class_indexing (dict, optional): A str-to-int mapping from label name to index
|
||||
(default=None, the folder names will be sorted alphabetically and each
|
||||
class will be given a unique index starting from 0).
|
||||
|
@ -4116,9 +4116,9 @@ class VOCDataset(MappableDataset):
|
|||
argument should be specified only when num_shards is also specified.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If xml of Annotations is a invalid format
|
||||
RuntimeError: If xml of Annotations loss attribution of "object"
|
||||
RuntimeError: If xml of Annotations loss attribution of "bndbox"
|
||||
RuntimeError: If xml of Annotations is a invalid format.
|
||||
RuntimeError: If xml of Annotations loss attribution of "object".
|
||||
RuntimeError: If xml of Annotations loss attribution of "bndbox".
|
||||
RuntimeError: If sampler and shuffle are specified at the same time.
|
||||
RuntimeError: If sampler and sharding are specified at the same time.
|
||||
RuntimeError: If num_shards is specified but shard_id is None.
|
||||
|
@ -4232,10 +4232,10 @@ class CocoDataset(MappableDataset):
|
|||
"""
|
||||
A source dataset for reading and parsing COCO dataset.
|
||||
|
||||
CocoDataset support four kinds of task:
|
||||
2017 Train/Val/Test Detection, Keypoints, Stuff, Panoptic.
|
||||
CocoDataset support four kinds of task: 2017 Train/Val/Test Detection, Keypoints, Stuff, Panoptic.
|
||||
|
||||
The generated dataset has multi-columns :
|
||||
|
||||
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
|
||||
['iscrowd', dtype=uint32]].
|
||||
- task='Stuff', column: [['image', dtype=uint8], ['segmentation',dtype=float32], ['iscrowd',dtype=uint32]].
|
||||
|
@ -4273,35 +4273,35 @@ class CocoDataset(MappableDataset):
|
|||
- False
|
||||
- not allowed
|
||||
|
||||
Citation of Coco dataset.
|
||||
Citation of Coco dataset.
|
||||
|
||||
.. code-block::
|
||||
|
||||
@article{DBLP:journals/corr/LinMBHPRDZ14,
|
||||
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and
|
||||
Lubomir D. Bourdev and Ross B. Girshick and James Hays and
|
||||
Pietro Perona and Deva Ramanan and Piotr Doll{\'{a}}r and C. Lawrence Zitnick},
|
||||
title = {Microsoft {COCO:} Common Objects in Context},
|
||||
journal = {CoRR},
|
||||
volume = {abs/1405.0312},
|
||||
year = {2014},
|
||||
url = {http://arxiv.org/abs/1405.0312},
|
||||
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and
|
||||
Lubomir D. Bourdev and Ross B. Girshick and James Hays and
|
||||
Pietro Perona and Deva Ramanan and Piotr Doll{\'{a}}r and C. Lawrence Zitnick},
|
||||
title = {Microsoft {COCO:} Common Objects in Context},
|
||||
journal = {CoRR},
|
||||
volume = {abs/1405.0312},
|
||||
year = {2014},
|
||||
url = {http://arxiv.org/abs/1405.0312},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {1405.0312},
|
||||
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org},
|
||||
description = {COCO is a large-scale object detection, segmentation, and captioning dataset.
|
||||
It contains 91 common object categories with 82 of them having more than 5,000
|
||||
labeled instances. In contrast to the popular ImageNet dataset, COCO has fewer
|
||||
categories but more instances per category.}
|
||||
eprint = {1405.0312},
|
||||
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org},
|
||||
description = {COCO is a large-scale object detection, segmentation, and captioning dataset.
|
||||
It contains 91 common object categories with 82 of them having more than 5,000
|
||||
labeled instances. In contrast to the popular ImageNet dataset, COCO has fewer
|
||||
categories but more instances per category.}
|
||||
}
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
annotation_file (str): Path to the annotation json.
|
||||
task (str): Set the task type of reading coco data, now support 'Detection'/'Stuff'/'Panoptic'/'Keypoint'
|
||||
(default='Detection')
|
||||
(default='Detection').
|
||||
num_samples (int, optional): The number of images to be included in the dataset
|
||||
(default=None, all images).
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
|
|
Loading…
Reference in New Issue