forked from mindspore-Ecosystem/mindspore
mod_conv2d_pool_add_ctcloss
This commit is contained in:
parent
da92f1affb
commit
727c7a4668
|
@ -0,0 +1,341 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/ctcloss_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
void CTCLossCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
probs_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
indice_dims_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
labels_dims_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
|
||||
if (probs_shape_.size() != 3) {
|
||||
MS_LOG(EXCEPTION) << "Probs dims: " << probs_shape_.size() << " not support.";
|
||||
}
|
||||
if (labels_dims_.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Labels dims: " << labels_dims_.size() << " not support.";
|
||||
}
|
||||
if (indice_dims_.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Labels indice dims: " << indice_dims_.size() << " not support.";
|
||||
}
|
||||
|
||||
preprocess_collapse_repeated_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "preprocess_collapse_repeated");
|
||||
ctc_merge_repeated_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "ctc_merge_repeated");
|
||||
ignore_longer_outputs_than_inputs_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "ignore_longer_outputs_than_inputs");
|
||||
|
||||
max_time_ = probs_shape_[0];
|
||||
batch_size_ = probs_shape_[1];
|
||||
num_class_ = probs_shape_[2];
|
||||
blank_index_ = num_class_ - 1;
|
||||
}
|
||||
|
||||
bool CTCLossCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T LogSumExp(T logprob1, T logprob2) {
|
||||
T kLogZero_ = -std::numeric_limits<T>::infinity();
|
||||
if (logprob1 == kLogZero_) {
|
||||
return logprob2;
|
||||
} else if (logprob2 == kLogZero_) {
|
||||
return logprob1;
|
||||
} else {
|
||||
return (logprob1 > logprob2) ? logprob1 + log1p(exp(logprob2 - logprob1))
|
||||
: logprob2 + log1p(exp(logprob1 - logprob2));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TT>
|
||||
void CTCLossCPUKernel::CalculateFwdVar(const std::vector<uint32_t> &label_with_blank,
|
||||
const std::vector<std::vector<TT>> &y,
|
||||
std::vector<std::vector<TT>> *log_alpha_b) {
|
||||
int U = label_with_blank.size();
|
||||
int T = (*log_alpha_b)[0].size();
|
||||
TT kLogZero_ = -std::numeric_limits<TT>::infinity();
|
||||
|
||||
(*log_alpha_b)[0][0] = log(y[blank_index_][0]);
|
||||
auto label_0 = (label_with_blank.size() > 1) ? label_with_blank[1] : blank_index_;
|
||||
if (label_with_blank.size() > 1) {
|
||||
(*log_alpha_b)[1][0] = log(y[label_0][0]);
|
||||
}
|
||||
|
||||
for (int t = 1; t < T; ++t) {
|
||||
int low = std::max(0, U - (2 * (T - t)));
|
||||
int high = std::min(U, 2 * (t + 1));
|
||||
for (int u = low; u < high; ++u) {
|
||||
auto sum_log_alpha_b = kLogZero_;
|
||||
if (ctc_merge_repeated_ || label_with_blank[u] == blank_index_) {
|
||||
sum_log_alpha_b = (*log_alpha_b)[u][t - 1];
|
||||
}
|
||||
|
||||
if (u > 0) {
|
||||
sum_log_alpha_b = LogSumExp(sum_log_alpha_b, (*log_alpha_b)[u - 1][t - 1]);
|
||||
}
|
||||
|
||||
if (u > 1) {
|
||||
bool matching_labels_merge = ctc_merge_repeated_ && (label_with_blank[u] == label_with_blank[u - 2]);
|
||||
if (label_with_blank[u] != blank_index_ && !matching_labels_merge) {
|
||||
sum_log_alpha_b = LogSumExp(sum_log_alpha_b, (*log_alpha_b)[u - 2][t - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
(*log_alpha_b)[u][t] = log(y[label_with_blank[u]][t]) + sum_log_alpha_b;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TT>
|
||||
void CTCLossCPUKernel::CalculateBwdVar(const std::vector<uint32_t> &label_with_blank,
|
||||
const std::vector<std::vector<TT>> &y,
|
||||
std::vector<std::vector<TT>> *log_beta_b) {
|
||||
int T = (*log_beta_b)[0].size();
|
||||
int U = label_with_blank.size();
|
||||
if (U > 1) {
|
||||
for (int u = U - 2; u < U; ++u) {
|
||||
(*log_beta_b)[u][T - 1] = TT(0);
|
||||
}
|
||||
} else {
|
||||
(*log_beta_b)[0][T - 1] = TT(0);
|
||||
(*log_beta_b)[0][T - 2] = TT(0);
|
||||
}
|
||||
|
||||
for (int t = T - 2; t >= 0; --t) {
|
||||
int low = std::max(0, U - (2 * (T - t)));
|
||||
int high = std::min(U, 2 * (t + 1));
|
||||
for (int u = low; u < high; ++u) {
|
||||
if (ctc_merge_repeated_ || label_with_blank[u] == blank_index_) {
|
||||
(*log_beta_b)[u][t] =
|
||||
LogSumExp((*log_beta_b)[u][t], (*log_beta_b)[u][t + 1] + TT(log(y[label_with_blank[u]][t + 1])));
|
||||
}
|
||||
|
||||
if (u + 1 < U) {
|
||||
(*log_beta_b)[u][t] =
|
||||
LogSumExp((*log_beta_b)[u][t], (*log_beta_b)[u + 1][t + 1] + TT(log(y[label_with_blank[u + 1]][t + 1])));
|
||||
}
|
||||
|
||||
if (u + 2 < U) {
|
||||
bool matching_labels_merge = ctc_merge_repeated_ && (label_with_blank[u] == label_with_blank[u + 2]);
|
||||
if (label_with_blank[u] != blank_index_ && !matching_labels_merge) {
|
||||
(*log_beta_b)[u][t] =
|
||||
LogSumExp((*log_beta_b)[u][t], (*log_beta_b)[u + 2][t + 1] + TT(log(y[label_with_blank[u + 2]][t + 1])));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TT>
|
||||
void CTCLossCPUKernel::CalculateGrad(const std::vector<uint32_t> &label_with_blank,
|
||||
const std::vector<std::vector<TT>> &y,
|
||||
const std::vector<std::vector<TT>> &log_alpha_b,
|
||||
const std::vector<std::vector<TT>> &log_beta_b, const TT log_pzx,
|
||||
std::vector<std::vector<TT>> *dy) {
|
||||
auto dy_b = dy;
|
||||
TT kLogZero_ = -std::numeric_limits<TT>::infinity();
|
||||
|
||||
if (log_pzx == kLogZero_) {
|
||||
MS_LOG(INFO) << "No valid path found";
|
||||
return;
|
||||
}
|
||||
|
||||
size_t L = y.size();
|
||||
size_t T = y[0].size();
|
||||
size_t U = label_with_blank.size();
|
||||
|
||||
for (size_t t = 0; t < T; ++t) {
|
||||
std::vector<TT> prob_sum(L, kLogZero_);
|
||||
|
||||
for (size_t u = 0; u < U; ++u) {
|
||||
uint32_t l = label_with_blank[u];
|
||||
prob_sum[l] = LogSumExp(prob_sum[l], log_alpha_b[u][t] + log_beta_b[u][t]);
|
||||
}
|
||||
for (size_t l = 0; l < L; ++l) {
|
||||
(*dy_b)[l][t] = y[l][t] - exp(prob_sum[l] - log_pzx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CTCLossCPUKernel::GenLableWithBlank(uint32_t *seq_len, const std::vector<std::vector<uint32_t>> &batch_label,
|
||||
std::vector<std::vector<uint32_t>> *label_with_blank) {
|
||||
for (size_t b = 0; b < batch_size_; ++b) {
|
||||
std::vector<uint32_t> l;
|
||||
const std::vector<uint32_t> &label = batch_label[b];
|
||||
bool has_blank = false;
|
||||
for (size_t i = 0; i < label.size(); ++i) {
|
||||
if (i == 0 || !preprocess_collapse_repeated_ || label[i] != label[i - 1]) {
|
||||
if (label[i] >= num_class_ - 1) {
|
||||
has_blank = true;
|
||||
} else {
|
||||
if (has_blank) {
|
||||
MS_LOG(EXCEPTION) << "Invalid labels(index >= num_class - 1) should not appear between two valid labels";
|
||||
}
|
||||
l.push_back(label[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!ignore_longer_outputs_than_inputs_) {
|
||||
if (l.size() > seq_len[b]) {
|
||||
MS_LOG(EXCEPTION) << "Input time(sequence length) should greater than output size(label length), but gets "
|
||||
<< seq_len[b] << "< " << l.size();
|
||||
}
|
||||
}
|
||||
|
||||
(*label_with_blank)[b].reserve(2 * l.size() + 1);
|
||||
for (auto l_i : l) {
|
||||
(*label_with_blank)[b].push_back(blank_index_);
|
||||
(*label_with_blank)[b].push_back(l_i);
|
||||
}
|
||||
(*label_with_blank)[b].push_back(blank_index_);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void InnerSoftMax(T *inputs_addr, std::vector<std::vector<T>> *softmax_probs, const uint32_t sequence_length,
|
||||
size_t num_class, size_t batch_size, size_t b) {
|
||||
for (size_t t = 0; t < sequence_length; ++t) {
|
||||
T maxCoeff(T(0));
|
||||
T sumCoeff(T(0));
|
||||
|
||||
for (size_t c = 0; c < num_class; ++c) {
|
||||
if (inputs_addr[t * batch_size * num_class + b * num_class + c] > maxCoeff) {
|
||||
maxCoeff = inputs_addr[t * batch_size * num_class + b * num_class + c];
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t c = 0; c < num_class; ++c) {
|
||||
sumCoeff += exp(inputs_addr[t * batch_size * num_class + b * num_class + c] - maxCoeff);
|
||||
(*softmax_probs)[c][t] = exp(inputs_addr[t * batch_size * num_class + b * num_class + c] - maxCoeff);
|
||||
}
|
||||
|
||||
for (size_t c = 0; c < num_class; ++c) {
|
||||
(*softmax_probs)[c][t] /= sumCoeff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void MatrixfromVector(uint32_t row, uint32_t col, std::vector<std::vector<T>> *array2D, const T init_value) {
|
||||
array2D->resize(row);
|
||||
for (size_t i = 0; i < row; ++i) {
|
||||
(*array2D)[i].resize(col, init_value);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CTCLossCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto labels_indices_addr = reinterpret_cast<uint64_t *>(inputs[1]->addr);
|
||||
auto labels_values_addr = reinterpret_cast<uint32_t *>(inputs[2]->addr);
|
||||
auto sequence_length_addr = reinterpret_cast<uint32_t *>(inputs[3]->addr);
|
||||
auto loss_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto gradient_addr = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
|
||||
std::vector<std::vector<uint32_t>> label_batch;
|
||||
std::vector<std::vector<uint32_t>> labels_with_blank;
|
||||
std::vector<uint64_t> each_label_length;
|
||||
|
||||
label_batch.resize(batch_size_);
|
||||
labels_with_blank.resize(batch_size_);
|
||||
each_label_length.resize(batch_size_, 0);
|
||||
|
||||
T kLogZero_ = -std::numeric_limits<T>::infinity();
|
||||
// check validation of sequence length
|
||||
for (size_t b = 0; b < batch_size_; ++b) {
|
||||
if (sequence_length_addr[b] < uint32_t(0)) {
|
||||
MS_LOG(EXCEPTION) << "Sequence length should > 0, but gets " << sequence_length_addr[b];
|
||||
}
|
||||
|
||||
if (sequence_length_addr[b] > max_time_) {
|
||||
MS_LOG(EXCEPTION) << "Max time should be greater than sequence length, but gets " << max_time_ << " < "
|
||||
<< sequence_length_addr[b];
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < indice_dims_[0]; ++i) {
|
||||
each_label_length[labels_indices_addr[i * 2]]++;
|
||||
}
|
||||
|
||||
// convert label format of label_value and label_indices to batch_label
|
||||
uint64_t cum_sum = 0;
|
||||
for (size_t b = 0; b < batch_size_; ++b) {
|
||||
std::vector<uint32_t> *b_value = &label_batch[b];
|
||||
for (size_t l = 0; l < each_label_length[b]; ++l) {
|
||||
b_value->push_back(labels_values_addr[cum_sum + l]);
|
||||
}
|
||||
cum_sum += each_label_length[b];
|
||||
}
|
||||
|
||||
// convert label to label with blank
|
||||
GenLableWithBlank(sequence_length_addr, label_batch, &labels_with_blank);
|
||||
|
||||
for (size_t b = 0; b < batch_size_; ++b) {
|
||||
std::vector<uint32_t> label_with_blank = labels_with_blank[b];
|
||||
// y_b [num_class, sequence_length]
|
||||
std::vector<std::vector<T>> y_b;
|
||||
std::vector<std::vector<T>> dy;
|
||||
std::vector<std::vector<T>> log_alpha_b;
|
||||
std::vector<std::vector<T>> log_beta_b;
|
||||
MatrixfromVector(num_class_, sequence_length_addr[b], &y_b, kLogZero_);
|
||||
MatrixfromVector(y_b.size(), y_b[0].size(), &dy, T(0));
|
||||
MatrixfromVector(label_with_blank.size(), sequence_length_addr[b], &log_alpha_b, kLogZero_);
|
||||
MatrixfromVector(label_with_blank.size(), sequence_length_addr[b], &log_beta_b, kLogZero_);
|
||||
InnerSoftMax(inputs_addr, &y_b, sequence_length_addr[b], num_class_, batch_size_, b);
|
||||
|
||||
CalculateFwdVar(label_with_blank, y_b, &log_alpha_b);
|
||||
CalculateBwdVar(label_with_blank, y_b, &log_beta_b);
|
||||
|
||||
T log_pzx = kLogZero_;
|
||||
for (size_t u = 0; u < label_with_blank.size(); ++u) {
|
||||
log_pzx = LogSumExp(log_pzx, log_alpha_b[u][0] + log_beta_b[u][0]);
|
||||
}
|
||||
|
||||
loss_addr[b] = -log_pzx;
|
||||
|
||||
CalculateGrad(label_with_blank, y_b, log_alpha_b, log_beta_b, log_pzx, &dy);
|
||||
|
||||
for (size_t t = 0; t < sequence_length_addr[b]; ++t) {
|
||||
for (size_t c = 0; c < num_class_; ++c) {
|
||||
gradient_addr[t * batch_size_ * num_class_ + b * num_class_ + c] = dy[c][t];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CTCLossCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 4) {
|
||||
MS_LOG(EXCEPTION) << "CTCLossCPUKernel needs 4 inputs, but gets " << input_num;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "CTCLossCPUKernel expects 2 outputs, but gets" << output_num;
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,93 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class CTCLossCPUKernel : public CPUKernel {
|
||||
public:
|
||||
CTCLossCPUKernel() = default;
|
||||
~CTCLossCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
void GenLableWithBlank(uint32_t *seq_len, const std::vector<std::vector<uint32_t>> &batch_label,
|
||||
std::vector<std::vector<uint32_t>> *label_with_blank);
|
||||
|
||||
template <typename T>
|
||||
void CalculateFwdVar(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
std::vector<std::vector<T>> *log_alpha_b);
|
||||
template <typename T>
|
||||
void CalculateBwdVar(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
std::vector<std::vector<T>> *log_beta_b);
|
||||
template <typename T>
|
||||
void CalculateGrad(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
const std::vector<std::vector<T>> &log_alpha_b, const std::vector<std::vector<T>> &log_beta_b,
|
||||
const T log_pzx, std::vector<std::vector<T>> *dy);
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> probs_shape_;
|
||||
std::vector<size_t> indice_dims_;
|
||||
std::vector<size_t> labels_dims_;
|
||||
size_t num_class_;
|
||||
size_t max_time_;
|
||||
size_t batch_size_;
|
||||
uint32_t blank_index_;
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
bool preprocess_collapse_repeated_;
|
||||
bool ctc_merge_repeated_;
|
||||
bool ignore_longer_outputs_than_inputs_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(CTCLoss,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
CTCLossCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(CTCLoss,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
CTCLossCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
|
@ -50,9 +50,6 @@ void Conv2dCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
(void)std::transform(dilation_me.begin(), dilation_me.end(), std::back_inserter(dilation_ori),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
if (stride_ori.size() != 4 || stride_ori[2] != stride_ori[3]) {
|
||||
MS_LOG(EXCEPTION) << "conv2d only support equal stride, and stride must be 4d!";
|
||||
}
|
||||
if (stride_ori[0] != 1 || stride_ori[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "conv2d stride only support 1 in N axis and C axis!";
|
||||
}
|
||||
|
@ -62,10 +59,10 @@ void Conv2dCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "conv2d dilation only support 1 in N axis and C axis!";
|
||||
}
|
||||
int stride = stride_ori[2];
|
||||
int dilation = dilation_ori[2];
|
||||
dnnl::memory::dims strides{stride, stride};
|
||||
dnnl::memory::dims dilates{dilation - 1, dilation - 1};
|
||||
|
||||
std::vector<int> stride{stride_ori[2], stride_ori[3]};
|
||||
dnnl::memory::dims strides{stride_ori[2], stride_ori[3]};
|
||||
dnnl::memory::dims dilates{dilation_ori[2] - 1, dilation_ori[3] - 1};
|
||||
std::vector<int> int_padding_l;
|
||||
std::vector<int> int_padding_r;
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
|
|
|
@ -50,20 +50,16 @@ void Conv2dGradFilterCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
(void)std::transform(dilation_me.begin(), dilation_me.end(), std::back_inserter(dilation_ori),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel only support equal stride, and stride must be 2d!";
|
||||
}
|
||||
|
||||
if (dilation_ori.size() != 4) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel dilation must be 4d!";
|
||||
}
|
||||
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel dilation only support 1 in N axis and C axis!";
|
||||
}
|
||||
int stride = stride_ori[0];
|
||||
int dilation = dilation_ori[2];
|
||||
|
||||
dnnl::memory::dims strides{stride, stride};
|
||||
dnnl::memory::dims dilates{dilation - 1, dilation - 1};
|
||||
std::vector<int> stride{stride_ori[0], stride_ori[1]};
|
||||
dnnl::memory::dims strides{stride_ori[0], stride_ori[1]};
|
||||
dnnl::memory::dims dilates{dilation_ori[2] - 1, dilation_ori[3] - 1};
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
std::vector<int> int_padding_l;
|
||||
std::vector<int> int_padding_r;
|
||||
|
|
|
@ -51,19 +51,18 @@ void Conv2dGradInputCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
(void)std::transform(dilation_me.begin(), dilation_me.end(), std::back_inserter(dilation_ori),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel only support equal stride, and stride must be 2d!";
|
||||
}
|
||||
|
||||
if (dilation_ori.size() != 4) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel dilation must be 4d!";
|
||||
}
|
||||
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
|
||||
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel dilation only support 1 in N axis and C axis!";
|
||||
}
|
||||
int stride = stride_ori[0];
|
||||
int dilation = dilation_ori[2];
|
||||
dnnl::memory::dims strides{stride, stride};
|
||||
dnnl::memory::dims dilates{dilation - 1, dilation - 1};
|
||||
|
||||
std::vector<int> stride{stride_ori[0], stride_ori[1]};
|
||||
|
||||
dnnl::memory::dims strides{stride_ori[0], stride_ori[1]};
|
||||
dnnl::memory::dims dilates{dilation_ori[2] - 1, dilation_ori[3] - 1};
|
||||
std::vector<int> int_padding_l;
|
||||
std::vector<int> int_padding_r;
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
|
|
|
@ -23,8 +23,9 @@
|
|||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void MKLCPUKernel::GetPadding(const CNodePtr &kernel_node, const std::string &pad_mode,
|
||||
const std::vector<size_t> &src_shape, const std::vector<size_t> &kernel_size, int stride,
|
||||
std::vector<int> *padding_l, std::vector<int> *padding_r) {
|
||||
const std::vector<size_t> &src_shape, const std::vector<size_t> &kernel_size,
|
||||
const std::vector<int> &stride, std::vector<int> *padding_l,
|
||||
std::vector<int> *padding_r) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
if (src_shape.size() < 2) {
|
||||
MS_LOG(EXCEPTION) << "set pad only support src dim >= 2!";
|
||||
|
@ -37,10 +38,10 @@ void MKLCPUKernel::GetPadding(const CNodePtr &kernel_node, const std::string &pa
|
|||
if (pad_mode == PAD_MODE_LOWER_SAME || pad_mode == PAD_MODE_UPPER_SAME) {
|
||||
for (size_t i = 0; i < weight_height.size(); ++i) {
|
||||
auto wh = weight_height[i];
|
||||
int re = wh % stride;
|
||||
int re = wh % stride[i];
|
||||
int pad_along;
|
||||
if (re == 0) {
|
||||
pad_along = std::max(SizeToInt(kernel_size[i]) - stride, 0);
|
||||
pad_along = std::max(SizeToInt(kernel_size[i]) - stride[i], 0);
|
||||
} else {
|
||||
pad_along = std::max(SizeToInt(kernel_size[i]) - re, 0);
|
||||
}
|
||||
|
@ -60,8 +61,8 @@ void MKLCPUKernel::GetPadding(const CNodePtr &kernel_node, const std::string &pa
|
|||
(void)std::transform(pad_me.begin(), pad_me.end(), std::back_inserter(pad),
|
||||
[](const int64_t &value) { return static_cast<int>(value); });
|
||||
padding_l->emplace_back(pad[0]);
|
||||
padding_l->emplace_back(pad[1]);
|
||||
padding_r->emplace_back(pad[2]);
|
||||
padding_l->emplace_back(pad[2]);
|
||||
padding_r->emplace_back(pad[1]);
|
||||
padding_r->emplace_back(pad[3]);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -35,7 +35,7 @@ class MKLCPUKernel : public CPUKernel {
|
|||
bool BinaryBroadCast(std::vector<size_t> *src0_shape, std::vector<size_t> *src1_shape,
|
||||
std::vector<size_t> *dst_shape);
|
||||
void GetPadding(const CNodePtr &kernel_node, const std::string &pad_mode, const std::vector<size_t> &src_shape,
|
||||
const std::vector<size_t> &kernel_size, int stride, std::vector<int> *padding_l,
|
||||
const std::vector<size_t> &kernel_size, const std::vector<int> &stride, std::vector<int> *padding_l,
|
||||
std::vector<int> *padding_r);
|
||||
void AddArgument(int arg_key, const dnnl::memory::desc &mem_desc, bool alloc = false);
|
||||
void SetArgumentHandle(int arg_key, void *ptr);
|
||||
|
|
|
@ -40,13 +40,14 @@ void AvgPoolingGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
if (origin_kernel_sizes.size() != 4 || strides.size() != 4) {
|
||||
MS_LOG(EXCEPTION) << "Invalid kernel size " << origin_kernel_sizes.size() << " or stride size " << strides.size();
|
||||
}
|
||||
std::vector<int> stride{strides[2], strides[3]};
|
||||
dnnl::memory::dims strides_dims{strides[2], strides[3]};
|
||||
dnnl::memory::dims kernels_dims{origin_kernel_sizes[2], origin_kernel_sizes[3]};
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
std::vector<int> int_padding_l;
|
||||
std::vector<int> int_padding_r;
|
||||
std::vector<size_t> kernel_size({IntToSize(origin_kernel_sizes[2]), IntToSize(origin_kernel_sizes[3])});
|
||||
GetPadding(kernel_node, pad_mode, src_shape, kernel_size, strides[3], &int_padding_l, &int_padding_r);
|
||||
GetPadding(kernel_node, pad_mode, src_shape, kernel_size, stride, &int_padding_l, &int_padding_r);
|
||||
if (int_padding_l.size() != 2 || int_padding_r.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Pooling avg get padding failed";
|
||||
}
|
||||
|
|
|
@ -34,7 +34,6 @@ class AvgPoolingGradCPUKernel : public MKLCPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
int stride_{0};
|
||||
std::vector<size_t> kernel_size_;
|
||||
};
|
||||
|
||||
|
|
|
@ -39,13 +39,14 @@ void PoolingCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
if (origin_kernel_sizes.size() != 4 || strides.size() != 4) {
|
||||
MS_LOG(EXCEPTION) << "invalid kernel size " << origin_kernel_sizes.size() << " or stride size " << strides.size();
|
||||
}
|
||||
std::vector<int> stride{strides[2], strides[3]};
|
||||
dnnl::memory::dims strides_dims{strides[2], strides[3]};
|
||||
dnnl::memory::dims kernels_dims{origin_kernel_sizes[2], origin_kernel_sizes[3]};
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
std::vector<int> int_padding_l;
|
||||
std::vector<int> int_padding_r;
|
||||
std::vector<size_t> kernel_size({IntToSize(origin_kernel_sizes[2]), IntToSize(origin_kernel_sizes[3])});
|
||||
GetPadding(kernel_node, pad_mode, src_shape, kernel_size, strides[3], &int_padding_l, &int_padding_r);
|
||||
GetPadding(kernel_node, pad_mode, src_shape, kernel_size, stride, &int_padding_l, &int_padding_r);
|
||||
if (int_padding_l.size() != 2 || int_padding_r.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "pooling get padding failed";
|
||||
}
|
||||
|
|
|
@ -41,7 +41,8 @@ void MaxPoolingGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
std::vector<int> padding_r;
|
||||
const std::string pad_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, PAD_MODE);
|
||||
kernel_size_ = {IntToSize(kernel_sizes[2]), IntToSize(kernel_sizes[3])};
|
||||
stride_ = strides[3];
|
||||
stride_.push_back(strides[2]);
|
||||
stride_.push_back(strides[3]);
|
||||
GetPadding(kernel_node, pad_mode, src_shape_, kernel_size_, stride_, &padding_l_, &padding_r);
|
||||
}
|
||||
|
||||
|
@ -94,9 +95,9 @@ void MaxPoolingGradCPUKernel::ChannelPoolingGrad(const float *input, const float
|
|||
box[1].second = IntToSize(std::min(w_start + SizeToInt(kernel_size_[1]), src_width));
|
||||
RowPoolingGrad(input, output, diff[diff_index], box, &row_max_pair);
|
||||
diff_index += 1;
|
||||
w_start += stride_;
|
||||
w_start += stride_[1];
|
||||
}
|
||||
h_start += stride_;
|
||||
h_start += stride_[0];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ class MaxPoolingGradCPUKernel : public MKLCPUKernel {
|
|||
void RowPoolingGrad(const float *input, float *output, float diff, const std::vector<std::pair<size_t, size_t>> &box,
|
||||
std::vector<std::pair<size_t, float>> *row_max_pair);
|
||||
void ChannelPoolingGrad(const float *input, const float *diff, float *output);
|
||||
int stride_{0};
|
||||
std::vector<int> stride_;
|
||||
std::vector<size_t> kernel_size_;
|
||||
std::vector<int> padding_l_;
|
||||
std::vector<size_t> src_shape_;
|
||||
|
|
|
@ -0,0 +1,88 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.loss = P.CTCLoss()
|
||||
self.div = P.RealDiv()
|
||||
self.mean = P.ReduceMean()
|
||||
|
||||
def construct(self, probs, label, input_length, indices):
|
||||
x, _ = self.loss(probs, indices, label, input_length)
|
||||
x = self.mean(x)
|
||||
return x
|
||||
|
||||
|
||||
class GradData(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradData, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=False)
|
||||
self.network = network
|
||||
|
||||
def construct(self, probs, indices, labels, input_lengths):
|
||||
return self.grad(self.network)(probs, indices, labels, input_lengths)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_ctcloss():
|
||||
probs = Tensor([[[-4.4131, -4.6093, -3.4333, -3.9268, -2.8917, -3.4093, -4.2243, -1.1379, -7.1046, -0.6902],
|
||||
[-2.5109, -3.3397, -4.9384, -1.2723, -1.1443, -2.4683, -2.6768, -4.1282, -2.7062, -3.1906],
|
||||
[-2.5092, -1.6392, -2.0864, -4.0059, -1.5610, -2.3223, -2.4816, -2.9922, -3.1412, -2.3311]],
|
||||
|
||||
[[-2.1243, -3.5773, -3.1108, -4.4253, -2.7080, -1.9653, -2.0499, -2.4418, -1.8620, -1.5229],
|
||||
[-2.2479, -3.5128, -1.4189, -2.8701, -1.8562, -2.2752, -2.7019, -2.1865, -2.5634, -2.9869],
|
||||
[-3.2144, -1.3986, -3.1083, -3.9634, -3.5131, -3.2317, -2.6200, -1.7938, -1.8159, -1.7255]],
|
||||
|
||||
[[-3.1301, -2.1649, -0.9286, -2.9452, -2.5992, -2.0263, -2.9201, -3.2155, -2.8302, -3.3636],
|
||||
[-1.4661, -3.6311, -2.4781, -4.6180, -2.7308, -1.7019, -1.5570, -2.6012, -4.0788, -2.3073],
|
||||
[-2.6833, -1.5033, -3.6922, -2.6360, -2.6974, -2.6847, -2.7579, -2.1396, -1.4093, -2.9630]],
|
||||
|
||||
[[-2.0094, -2.3024, -3.3673, -1.0220, -2.8326, -2.2613, -3.0535, -2.9879, -3.7015, -2.4510],
|
||||
[-1.9071, -3.2603, -2.3229, -2.0572, -4.3450, -2.1284, -2.6306, -1.3824, -2.9815, -2.5061],
|
||||
[-2.7931, -3.7631, -3.2440, -4.3887, -1.0271, -3.8851, -1.2418, -4.5123, -2.2993, -2.4607]],
|
||||
|
||||
[[-1.5763, -2.7539, -3.6941, -3.8166, -1.2599, -2.6903, -2.5826, -4.8208, -2.9562, -1.6321],
|
||||
[-3.3031, -3.0087, -1.9982, -1.9081, -3.8731, -2.8764, -2.2485, -2.3808, -1.4283, -2.1625],
|
||||
[-2.4516, -3.2394, -4.2053, -4.3541, -2.5229, -4.0717, -1.4894, -2.3151, -1.1098, -2.3465]]],
|
||||
dtype=mstype.float32)
|
||||
labels = Tensor([3, 4, 6, 4, 7, 1, 4, 6, 6, 8], dtype=mstype.int32)
|
||||
indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2], [2, 3]]
|
||||
indices = Tensor(indices, dtype=mstype.int64)
|
||||
input_lengths = Tensor([5, 5, 5], dtype=mstype.int32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
net = Net()
|
||||
ctc_loss = net(probs, labels, input_lengths, indices)
|
||||
expect_loss = [9.083767]
|
||||
assert np.allclose(ctc_loss.asnumpy(), expect_loss)
|
||||
|
||||
grad = GradData(net)(probs, labels, input_lengths, indices)
|
||||
grad = P.ReduceMean()(grad[0])
|
||||
expect_grad = [-5.9604646e-09]
|
||||
assert np.allclose(grad.asnumpy(), expect_grad, atol=1e-5)
|
Loading…
Reference in New Issue