forked from mindspore-Ecosystem/mindspore
!402 Add parallel op for Square
Merge pull request !402 from yangzhenzhang/square
This commit is contained in:
commit
7214c04114
|
@ -128,6 +128,7 @@ REGISTER(BatchMatMulInfo);
|
||||||
REGISTER(ExpandDimsInfo);
|
REGISTER(ExpandDimsInfo);
|
||||||
REGISTER(SqueezeInfo);
|
REGISTER(SqueezeInfo);
|
||||||
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
|
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
|
||||||
|
REGISTER(SquareInfo);
|
||||||
} // namespace parallel
|
} // namespace parallel
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
|
|
||||||
|
|
|
@ -203,6 +203,14 @@ class SqueezeInfo : public ActivationOther {
|
||||||
private:
|
private:
|
||||||
ValueTuplePtr axis_;
|
ValueTuplePtr axis_;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class SquareInfo : public ActivationOther {
|
||||||
|
public:
|
||||||
|
SquareInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
|
||||||
|
const PrimitiveAttrs& attrs)
|
||||||
|
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||||
|
~SquareInfo() override = default;
|
||||||
|
};
|
||||||
} // namespace parallel
|
} // namespace parallel
|
||||||
} // namespace mindspore
|
} // namespace mindspore
|
||||||
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_
|
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_
|
||||||
|
|
|
@ -202,9 +202,10 @@ constexpr char SQRT[] = "Sqrt";
|
||||||
constexpr char ASSIGN[] = "Assign";
|
constexpr char ASSIGN[] = "Assign";
|
||||||
constexpr char GET_NEXT[] = "GetNext";
|
constexpr char GET_NEXT[] = "GetNext";
|
||||||
constexpr char SQUEEZE[] = "Squeeze";
|
constexpr char SQUEEZE[] = "Squeeze";
|
||||||
constexpr char Neg[] = "Neg";
|
constexpr char NEG[] = "Neg";
|
||||||
constexpr char BATCH_MATMUL[] = "BatchMatMul";
|
constexpr char BATCH_MATMUL[] = "BatchMatMul";
|
||||||
constexpr char EXPAND_DIMS[] = "ExpandDims";
|
constexpr char EXPAND_DIMS[] = "ExpandDims";
|
||||||
|
constexpr char SQUARE[] = "Square";
|
||||||
|
|
||||||
// Parallel don't care
|
// Parallel don't care
|
||||||
constexpr char TUPLE_GETITEM[] = "tuple_getitem";
|
constexpr char TUPLE_GETITEM[] = "tuple_getitem";
|
||||||
|
|
|
@ -104,13 +104,14 @@ std::vector<std::string> splittable_op_ = {MATMUL,
|
||||||
SQRT,
|
SQRT,
|
||||||
GET_NEXT,
|
GET_NEXT,
|
||||||
CAST,
|
CAST,
|
||||||
Neg,
|
NEG,
|
||||||
|
SQUARE,
|
||||||
BATCH_MATMUL,
|
BATCH_MATMUL,
|
||||||
EXPAND_DIMS,
|
EXPAND_DIMS,
|
||||||
SQUEEZE};
|
SQUEEZE};
|
||||||
|
|
||||||
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT,
|
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, CAST,
|
||||||
CAST, POW, EXP, LOG, COS, ACOS, LOGICALNOT};
|
POW, EXP, LOG, COS, ACOS, LOGICALNOT, NEG, SQUARE};
|
||||||
|
|
||||||
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
|
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
|
||||||
MS_EXCEPTION_IF_NULL(root);
|
MS_EXCEPTION_IF_NULL(root);
|
||||||
|
|
|
@ -0,0 +1,85 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore import context, Tensor, Parameter
|
||||||
|
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.common.api import _executor
|
||||||
|
|
||||||
|
|
||||||
|
class Net(Cell):
|
||||||
|
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.mul = P.Mul().set_strategy(strategy1)
|
||||||
|
self.square = P.Square().set_strategy(strategy2)
|
||||||
|
self.mul2 = P.Mul().set_strategy(strategy1)
|
||||||
|
self.mul_weight = Parameter(mul_weight, "w1")
|
||||||
|
|
||||||
|
def construct(self, x, b):
|
||||||
|
out = self.mul(x, self.mul_weight)
|
||||||
|
out = self.square(out)
|
||||||
|
out = self.mul2(out, b)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||||
|
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||||
|
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def compile_net(net):
|
||||||
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
|
train_net = TrainOneStepCell(net, optimizer)
|
||||||
|
_executor.compile(train_net, _x, _b)
|
||||||
|
context.reset_auto_parallel_context()
|
||||||
|
|
||||||
|
|
||||||
|
def test_square_data_parallel():
|
||||||
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||||
|
strategy1 = ((16, 1, 1), (16, 1, 1))
|
||||||
|
strategy2 = ((16, 1, 1), )
|
||||||
|
net = Net(_w1, strategy1, strategy2)
|
||||||
|
compile_net(net)
|
||||||
|
|
||||||
|
|
||||||
|
def test_square_model_parallel():
|
||||||
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||||
|
strategy1 = ((1, 1, 16), (1, 1, 16))
|
||||||
|
strategy2 = ((1, 1, 16), )
|
||||||
|
net = Net(_w1, strategy1, strategy2)
|
||||||
|
compile_net(net)
|
||||||
|
|
||||||
|
|
||||||
|
def test_square_hybrid_parallel():
|
||||||
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||||
|
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||||
|
strategy2 = ((2, 2, 4), )
|
||||||
|
net = Net(_w1, strategy1, strategy2)
|
||||||
|
compile_net(net)
|
||||||
|
|
||||||
|
|
||||||
|
def test_square_auto_parallel():
|
||||||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||||
|
net = Net(_w1)
|
||||||
|
compile_net(net)
|
||||||
|
|
||||||
|
|
||||||
|
def test_square_repeat_calc():
|
||||||
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||||
|
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||||
|
strategy2 = ((1, 2, 2), )
|
||||||
|
net = Net(_w1, strategy1, strategy2)
|
||||||
|
compile_net(net)
|
Loading…
Reference in New Issue