!402 Add parallel op for Square

Merge pull request !402 from yangzhenzhang/square
This commit is contained in:
mindspore-ci-bot 2020-04-17 15:06:40 +08:00 committed by Gitee
commit 7214c04114
5 changed files with 100 additions and 4 deletions

View File

@ -128,6 +128,7 @@ REGISTER(BatchMatMulInfo);
REGISTER(ExpandDimsInfo); REGISTER(ExpandDimsInfo);
REGISTER(SqueezeInfo); REGISTER(SqueezeInfo);
REGISTER(SigmoidCrossEntropyWithLogitsInfo); REGISTER(SigmoidCrossEntropyWithLogitsInfo);
REGISTER(SquareInfo);
} // namespace parallel } // namespace parallel
} // namespace mindspore } // namespace mindspore

View File

@ -203,6 +203,14 @@ class SqueezeInfo : public ActivationOther {
private: private:
ValueTuplePtr axis_; ValueTuplePtr axis_;
}; };
class SquareInfo : public ActivationOther {
public:
SquareInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
const PrimitiveAttrs& attrs)
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~SquareInfo() override = default;
};
} // namespace parallel } // namespace parallel
} // namespace mindspore } // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_ #endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_

View File

@ -202,9 +202,10 @@ constexpr char SQRT[] = "Sqrt";
constexpr char ASSIGN[] = "Assign"; constexpr char ASSIGN[] = "Assign";
constexpr char GET_NEXT[] = "GetNext"; constexpr char GET_NEXT[] = "GetNext";
constexpr char SQUEEZE[] = "Squeeze"; constexpr char SQUEEZE[] = "Squeeze";
constexpr char Neg[] = "Neg"; constexpr char NEG[] = "Neg";
constexpr char BATCH_MATMUL[] = "BatchMatMul"; constexpr char BATCH_MATMUL[] = "BatchMatMul";
constexpr char EXPAND_DIMS[] = "ExpandDims"; constexpr char EXPAND_DIMS[] = "ExpandDims";
constexpr char SQUARE[] = "Square";
// Parallel don't care // Parallel don't care
constexpr char TUPLE_GETITEM[] = "tuple_getitem"; constexpr char TUPLE_GETITEM[] = "tuple_getitem";

View File

@ -104,13 +104,14 @@ std::vector<std::string> splittable_op_ = {MATMUL,
SQRT, SQRT,
GET_NEXT, GET_NEXT,
CAST, CAST,
Neg, NEG,
SQUARE,
BATCH_MATMUL, BATCH_MATMUL,
EXPAND_DIMS, EXPAND_DIMS,
SQUEEZE}; SQUEEZE};
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, CAST,
CAST, POW, EXP, LOG, COS, ACOS, LOGICALNOT}; POW, EXP, LOG, COS, ACOS, LOGICALNOT, NEG, SQUARE};
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) { bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
MS_EXCEPTION_IF_NULL(root); MS_EXCEPTION_IF_NULL(root);

View File

@ -0,0 +1,85 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super(Net, self).__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.square = P.Square().set_strategy(strategy2)
self.mul2 = P.Mul().set_strategy(strategy1)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.square(out)
out = self.mul2(out, b)
return out
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile_net(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_square_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1, 1), (16, 1, 1))
strategy2 = ((16, 1, 1), )
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_square_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 1, 16), (1, 1, 16))
strategy2 = ((1, 1, 16), )
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_square_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((2, 2, 4), )
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_square_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_square_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((1, 2, 2), )
net = Net(_w1, strategy1, strategy2)
compile_net(net)