diff --git a/tests/ut/python/fallback/test_graph_fallback_numpy.py b/tests/ut/python/fallback/test_graph_fallback_numpy.py new file mode 100644 index 00000000000..7773965a548 --- /dev/null +++ b/tests/ut/python/fallback/test_graph_fallback_numpy.py @@ -0,0 +1,492 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" test graph fallback """ +import pytest +import numpy as np +from mindspore import ms_function, context + +context.set_context(mode=context.GRAPH_MODE) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_1(): + """ + Feature: JIT Fallback + Description: Test numpy with ndarray in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_1(): + a = np.array([1, 2, 3]) + return a + res = np_array_1() + assert res == (1, 2, 3) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_2(): + """ + Feature: JIT Fallback + Description: Test numpy with ndarray in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_2(): + a = np.array([[1, 2], [3, 4]]) + return a + res = np_array_2() + assert res == ([1, 2], [3, 4]) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_3(): + """ + Feature: JIT Fallback + Description: Test numpy with ndarray in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_3(): + a = np.array([1, 2, 3, 4, 5], ndmin=2) + return a + res = np_array_3() + assert res == ([1, 2, 3, 4, 5],) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_4(): + """ + Feature: JIT Fallback + Description: Test numpy with ndarray in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_4(): + a = np.array([1, 2, 3], dtype=complex) + return a + res = np_array_4() + assert res == ((1+0j), (2+0j), (3+0j)) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_dtype_1(): + """ + Feature: JIT Fallback + Description: Test numpy with dtype in graph mode. + Expectation: No exception. + """ + @ms_function + def np_dtype_1(): + t = np.dtype(np.int32) + return t + res = np_dtype_1() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_dtype_2(): + """ + Feature: JIT Fallback + Description: Test numpy with dtype in graph mode. + Expectation: No exception. + """ + @ms_function + def np_dtype_2(): + t = np.dtype('i4') + return t + res = np_dtype_2() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_dtype_3(): + """ + Feature: JIT Fallback + Description: Test numpy with dtype in graph mode. + Expectation: No exception. + """ + @ms_function + def np_dtype_3(): + t = np.dtype([('age', np.int8)]) + return t + res = np_dtype_3() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_dtype_4(): + """ + Feature: JIT Fallback + Description: Test numpy with dtype in graph mode. + Expectation: No exception. + """ + @ms_function + def np_dtype_4(): + student = np.dtype([('name', 'S20'), ('age', 'i1'), ('marks', 'f4')]) + a = np.array([('abc', 21, 50), ('xyz', 18, 75)], dtype=student) + return a + res = np_dtype_4() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_ndim(): + """ + Feature: JIT Fallback + Description: Test numpy with array ndim in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_ndim(): + a = np.arange(24) + return a.ndim + res = np_array_ndim() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_reshape_1(): + """ + Feature: JIT Fallback + Description: Test numpy with array reshape in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_reshape_1(): + a = np.array([[1, 2, 3], [4, 5, 6]]) + b = a.reshape(3, 2) + return b.ndim + res = np_array_reshape_1() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_reshape_2(): + """ + Feature: JIT Fallback + Description: Test numpy with array reshape in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_reshape_2(): + a = np.array([[1, 2, 3], [4, 5, 6]]) + a.shape = (3, 2) + return a + res = np_array_reshape_2() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_itemsize(): + """ + Feature: JIT Fallback + Description: Test numpy with array reshape in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_itemsize(): + a = np.array([1, 2, 3, 4, 5], dtype=np.int8) + return a.itemsize + res = np_array_itemsize() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_flags(): + """ + Feature: JIT Fallback + Description: Test numpy with array flags in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_flags(): + a = np.array([1, 2, 3, 4, 5]) + return a.flags + res = np_array_flags() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_empty_zeros_ones(): + """ + Feature: JIT Fallback + Description: Test numpy with array empty, zeros, ones in graph mode. + Expectation: No exception. + """ + @ms_function + def np_empty_zeros_ones(): + x = np.empty([3, 2], dtype=np.int) + y = np.zeros(x.shape, dtype=np.int) + z = np.ones(x.shape, dtype=np.int) + return y + z + res = np_empty_zeros_ones() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_asarray_list(): + """ + Feature: JIT Fallback + Description: Test numpy with list to array in graph mode. + Expectation: No exception. + """ + @ms_function + def np_asarray_list(): + x = [1, 2, 3] + y = np.asarray(x) + return y + res = np_asarray_list() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_asarray_tuple(): + """ + Feature: JIT Fallback + Description: Test numpy with tuple to array in graph mode. + Expectation: No exception. + """ + @ms_function + def np_asarray_tuple(): + x = (1, 2, 3) + y = np.asarray(x) + return y + res = np_asarray_tuple() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_asarray_tuple_list(): + """ + Feature: JIT Fallback + Description: Test numpy with tuple list to array in graph mode. + Expectation: No exception. + """ + @ms_function + def np_asarray_tuple_list(): + x = [(1, 2, 3), (4, 5)] + y = np.asarray(x) + return y + res = np_asarray_tuple_list() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_frombuffer(): + """ + Feature: JIT Fallback + Description: Test numpy with frombuffer in graph mode. + Expectation: No exception. + """ + @ms_function + def np_frombuffer(): + s = b'Hello World' + a = np.frombuffer(s, dtype='S1') + return a + res = np_frombuffer() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_fromiter(): + """ + Feature: JIT Fallback + Description: Test numpy with fromiter in graph mode. + Expectation: No exception. + """ + @ms_function + def np_fromiter(): + l = range(5) + it = iter(l) + x = np.fromiter(it, dtype=float) + return x + res = np_fromiter() + print("res:", res) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_arange(): + """ + Feature: JIT Fallback + Description: Test numpy with arange in graph mode. + Expectation: No exception. + """ + @ms_function + def np_arange(): + x = np.arange(5, dtype=float) + y = np.arange(10, 20, 2) + return x, y + res1, res2 = np_arange() + print("res1:", res1) + print("res2:", res2) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_linspace(): + """ + Feature: JIT Fallback + Description: Test numpy with linspace in graph mode. + Expectation: No exception. + """ + @ms_function + def np_linspace(): + a = np.linspace(1, 10, 10) + b = np.linspace(1, 1, 10) + c = np.linspace(10, 20, 5, endpoint=False) + d = np.linspace(10, 20, 5, endpoint=True) + e = np.linspace(1, 10, 10, retstep=True) + f = np.linspace(1, 10, 10).reshape([10, 1]) + return a, b, c, d, e, f + a, b, c, d, e, f = np_linspace() + print("a:", a) + print("b:", b) + print("c:", c) + print("d:", d) + print("e:", e) + print("f:", f) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_logspace(): + """ + Feature: JIT Fallback + Description: Test numpy with logspace in graph mode. + Expectation: No exception. + """ + @ms_function + def np_logspace(): + a = np.logspace(1.0, 2.0, num=10) + b = np.logspace(0, 9, 10, base=2) + return a, b + a, b = np_logspace() + print("a:", a) + print("b:", b) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_arange_slice_1(): + """ + Feature: JIT Fallback + Description: Test numpy with arange slice in graph mode. + Expectation: No exception. + """ + @ms_function + def np_arange_slice_1(): + x = np.arange(10) + index = slice(2, 7, 2) + a = x[index] + b = x[2:7:2] + c = x[5] + d = x[2:] + e = x[2:5] + return a, b, c, d, e + a, b, c, d, e = np_arange_slice_1() + print("a:", a) + print("b:", b) + print("c:", c) + print("d:", d) + print("e:", e) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_arange_slice_2(): + """ + Feature: JIT Fallback + Description: Test numpy with arange slice in graph mode. + Expectation: No exception. + """ + @ms_function + def np_arange_slice_2(): + x = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]]) + a = x[1:] + b = x[..., 1] + c = x[1, ...] + d = x[..., 1:] + return a, b, c, d + a, b, c, d = np_arange_slice_2() + print("a:", a) + print("b:", b) + print("c:", c) + print("d:", d) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_advanced_index_1(): + """ + Feature: JIT Fallback + Description: Test numpy with array advanced index in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_advanced_index_1(): + x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) + a = x[[0, 1, 2], [0, 1, 0]] + rows = np.array([[0, 0], [3, 3]]) + cols = np.array([[0, 2], [0, 2]]) + b = x[rows, cols] + c = x[1:3, 1:3] + d = x[1:3, [1, 2]] + e = x[..., 1:] + return a, b, c, d, e + a, b, c, d, e = np_array_advanced_index_1() + print("a:", a) + print("b:", b) + print("c:", c) + print("d:", d) + print("e:", e) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_advanced_index_2(): + """ + Feature: JIT Fallback + Description: Test numpy with array advanced index in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_advanced_index_2(): + x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) + y = np.array([np.nan, 1, 2, np.nan, 3, 4, 5]) + z = np.array([1, 2 + 6j, 5, 3.5 + 5j]) + a = x[x > 5] + b = y[~np.isnan(y)] + c = z[np.iscomplex(z)] + return a, b, c + a, b, c = np_array_advanced_index_2() + print("a:", a) + print("b:", b) + print("c:", c) + + +@pytest.mark.skip(reason='Not support graph fallback feature yet') +def test_np_array_advanced_index_3(): + """ + Feature: JIT Fallback + Description: Test numpy with array advanced index in graph mode. + Expectation: No exception. + """ + @ms_function + def np_array_advanced_index_3(): + x = np.arange(32).reshape((8, 4)) + a = x[[4, 2, 1, 7]] + y = np.arange(32).reshape((8, 4)) + b = y[[-4, -2, -1, -7]] + z = np.arange(32).reshape((8, 4)) + c = z[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])] + return a, b, c + a, b, c = np_array_advanced_index_3() + print("a:", a) + print("b:", b) + print("c:", c)