forked from mindspore-Ecosystem/mindspore
change shape and dtype of tensor from interface to attr
This commit is contained in:
parent
4936fe487f
commit
6d5c580a61
|
@ -1020,7 +1020,7 @@ class LayerNorm(Cell):
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||||
>>> shape1 = x.shape()[1:]
|
>>> shape1 = x.shape[1:]
|
||||||
>>> m = G.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
>>> m = G.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||||
>>> m(x)
|
>>> m(x)
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -746,8 +746,8 @@ class DenseQuant(Cell):
|
||||||
self.has_bias = check_bool(has_bias)
|
self.has_bias = check_bool(has_bias)
|
||||||
|
|
||||||
if isinstance(weight_init, Tensor):
|
if isinstance(weight_init, Tensor):
|
||||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||||
weight_init.shape()[1] != in_channels:
|
weight_init.shape[1] != in_channels:
|
||||||
raise ValueError("weight_init shape error")
|
raise ValueError("weight_init shape error")
|
||||||
|
|
||||||
self.weight = Parameter(initializer(
|
self.weight = Parameter(initializer(
|
||||||
|
@ -755,7 +755,7 @@ class DenseQuant(Cell):
|
||||||
|
|
||||||
if self.has_bias:
|
if self.has_bias:
|
||||||
if isinstance(bias_init, Tensor):
|
if isinstance(bias_init, Tensor):
|
||||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||||
raise ValueError("bias_init shape error")
|
raise ValueError("bias_init shape error")
|
||||||
|
|
||||||
self.bias = Parameter(initializer(
|
self.bias = Parameter(initializer(
|
||||||
|
|
|
@ -77,15 +77,15 @@ class GNNFeatureTransform(nn.Cell):
|
||||||
self.has_bias = check_bool(has_bias)
|
self.has_bias = check_bool(has_bias)
|
||||||
|
|
||||||
if isinstance(weight_init, Tensor):
|
if isinstance(weight_init, Tensor):
|
||||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||||
weight_init.shape()[1] != in_channels:
|
weight_init.shape[1] != in_channels:
|
||||||
raise ValueError("weight_init shape error")
|
raise ValueError("weight_init shape error")
|
||||||
|
|
||||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||||
|
|
||||||
if self.has_bias:
|
if self.has_bias:
|
||||||
if isinstance(bias_init, Tensor):
|
if isinstance(bias_init, Tensor):
|
||||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||||
raise ValueError("bias_init shape error")
|
raise ValueError("bias_init shape error")
|
||||||
|
|
||||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||||
|
|
|
@ -28,4 +28,4 @@ def test_cast():
|
||||||
type_dst = ms.float32
|
type_dst = ms.float32
|
||||||
cast = P.Cast()
|
cast = P.Cast()
|
||||||
result = cast(input_x, type_dst)
|
result = cast(input_x, type_dst)
|
||||||
assert result.dtype() == type_dst
|
assert result.dtype == type_dst
|
||||||
|
|
Loading…
Reference in New Issue