forked from mindspore-Ecosystem/mindspore
!13502 Modify Profiler API example to a executable scripts
From: @gzhcv Reviewed-by: @yelihua Signed-off-by:
This commit is contained in:
commit
6c096bff31
|
@ -65,14 +65,45 @@ class Profiler:
|
|||
This parameter is used to support offline parsing.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import nn, context
|
||||
>>> from mindspore.train import Model
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> from mindspore.profiler import Profiler
|
||||
>>> import mindspore.context
|
||||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
>>> device_id=int(os.environ["DEVICE_ID"]))
|
||||
>>> profiler = Profiler()
|
||||
>>> model = Model()
|
||||
>>> model.train()
|
||||
>>> profiler.analyse()
|
||||
>>>
|
||||
>>>
|
||||
>>> class Net(nn.Cell):
|
||||
... def __init__(self):
|
||||
... super(Net, self).__init__()
|
||||
... self.fc = nn.Dense(2,2)
|
||||
... def construct(self, x):
|
||||
... return self.fc(x)
|
||||
>>>
|
||||
>>> def generator():
|
||||
... for i in range(2):
|
||||
... yield (np.ones([2, 2]).astype(np.float32), np.ones([2]).astype(np.int32))
|
||||
>>>
|
||||
>>> def train(net):
|
||||
... optimizer = nn.Momentum(net.trainable_params(), 1, 0.9)
|
||||
... loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
... data = ds.GeneratorDataset(generator, ["data", "label"])
|
||||
... model = Model(net, loss, optimizer)
|
||||
... model.train(1, data)
|
||||
>>>
|
||||
>>> if __name__ == '__main__':
|
||||
... # If the device_target is GPU, set the device_target to "GPU"
|
||||
... context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
...
|
||||
... # Init Profiler
|
||||
... # Note that the Profiler should be initialized after context.set_context and before model.train
|
||||
... profiler = Profiler()
|
||||
...
|
||||
... # Train Model
|
||||
... net = Net()
|
||||
... train(net)
|
||||
...
|
||||
... # Profiler end
|
||||
... profiler.analyse()
|
||||
"""
|
||||
|
||||
_hwts_output_filename_target = "output_format_data_hwts_"
|
||||
|
@ -83,6 +114,7 @@ class Profiler:
|
|||
# get device_id and device_target
|
||||
self._get_devid_and_devtarget()
|
||||
self._get_output_path(kwargs)
|
||||
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = self._output_path
|
||||
|
||||
|
@ -154,17 +186,7 @@ class Profiler:
|
|||
|
||||
def analyse(self):
|
||||
"""
|
||||
Collect and analyse performance data, called after training or during training.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.profiler import Profiler
|
||||
>>> import mindspore.context
|
||||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
>>> device_id=int(os.environ["DEVICE_ID"]))
|
||||
>>> profiler = Profiler()
|
||||
>>> model = Model()
|
||||
>>> model.train()
|
||||
>>> profiler.analyse()
|
||||
Collect and analyse performance data, called after training or during training. The example shows above.
|
||||
"""
|
||||
self._cpu_profiler.stop()
|
||||
if self._device_target and self._device_target == "GPU":
|
||||
|
|
Loading…
Reference in New Issue