!1166 add dynamic learning rate

Merge pull request !1166 from wukesong/add-dy-lr
This commit is contained in:
mindspore-ci-bot 2020-05-18 09:28:30 +08:00 committed by Gitee
commit 69edd8e2fc
3 changed files with 59 additions and 11 deletions

View File

@ -0,0 +1,44 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""learning rate generator"""
import numpy as np
def get_lr(current_step, lr_max, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
current_step(int): current steps of the training
lr_max(float): max learning rate
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
decay_epoch_index = [0.8 * total_steps]
for i in range(total_steps):
if i < decay_epoch_index[0]:
lr = lr_max
else:
lr = lr_max * 0.1
lr_each_step.append(lr)
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate

View File

@ -21,12 +21,14 @@ python train.py --data_path /YourDataPath
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset
from generator_lr import get_lr
import mindspore.nn as nn
from mindspore import context
from mindspore import Tensor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.model_zoo.alexnet import AlexNet
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
if __name__ == "__main__":
@ -43,16 +45,17 @@ if __name__ == "__main__":
network = AlexNet(cfg.num_classes)
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, cfg.save_checkpoint_steps))
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test
print("============== Starting Training ==============")
ds_train = create_dataset(args.data_path,
cfg.batch_size,
cfg.epoch_size,
"train")
cfg.epoch_size)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck)
model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()],
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
dataset_sink_mode=args.dataset_sink_mode)

View File

@ -25,7 +25,7 @@ from dataset import create_dataset
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
@ -40,19 +40,20 @@ if __name__ == "__main__":
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
ds_train = create_dataset(os.path.join(args.data_path, "train"),
cfg.batch_size,
cfg.epoch_size)
network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
ds_train = create_dataset(os.path.join(args.data_path, "train"),
cfg.batch_size,
cfg.epoch_size)
print("============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor()],
model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
dataset_sink_mode=args.dataset_sink_mode)