forked from mindspore-Ecosystem/mindspore
!2987 Add random normal op at MindSpore front-end
Merge pull request !2987 from peixu_ren/custom_gpu2
This commit is contained in:
commit
683920d1c8
|
@ -14,6 +14,7 @@
|
|||
# ============================================================================
|
||||
"""Bernoulli Distribution"""
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from .distribution import Distribution
|
||||
from ._utils.utils import cast_to_tensor, check_prob
|
||||
from ...common import dtype as mstype
|
||||
|
@ -53,6 +54,7 @@ class Bernoulli(Distribution):
|
|||
check_prob(self._probs)
|
||||
else:
|
||||
self._probs = probs
|
||||
self.seed = seed
|
||||
|
||||
# ops needed for the class
|
||||
self.log = P.Log()
|
||||
|
@ -64,7 +66,6 @@ class Bernoulli(Distribution):
|
|||
self.const = P.ScalarToArray()
|
||||
self.less = P.Less()
|
||||
self.cast = P.Cast()
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.erf = P.Erf()
|
||||
self.sqrt = P.Sqrt()
|
||||
|
||||
|
@ -159,7 +160,7 @@ class Bernoulli(Distribution):
|
|||
mean_zero = self.const(0.0)
|
||||
sd_one = self.const(1.0)
|
||||
sqrt_two = self.sqrt(self.const(2.0))
|
||||
sample_norm = self.normal(sample_shape, mean_zero, sd_one)
|
||||
sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed)
|
||||
sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two)))
|
||||
sample = self.less(sample_uniform, probs1)
|
||||
sample = self.cast(sample, self._dtype)
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
"""Normal Distribution"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from .distribution import Distribution
|
||||
from ._utils.utils import convert_to_batch, check_greater_equal_zero
|
||||
from ...common import dtype as mstype
|
||||
|
@ -60,6 +61,7 @@ class Normal(Distribution):
|
|||
else:
|
||||
self._mean_value = mean
|
||||
self._sd_value = sd
|
||||
self.seed = seed
|
||||
|
||||
#ops needed for the class
|
||||
self.exp = P.Exp()
|
||||
|
@ -70,7 +72,6 @@ class Normal(Distribution):
|
|||
self.sqrt = P.Sqrt()
|
||||
self.realdiv = P.RealDiv()
|
||||
self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.shape = P.Shape()
|
||||
self.zeroslike = P.ZerosLike()
|
||||
self.const = P.ScalarToArray()
|
||||
|
@ -163,7 +164,7 @@ class Normal(Distribution):
|
|||
sample_shape = shape + batch_shape
|
||||
mean_zero = self.const(0.0)
|
||||
sd_one = self.const(1.0)
|
||||
sample_norm = self.normal(sample_shape, mean_zero, sd_one)
|
||||
sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed)
|
||||
sample = self.add(mean, self.mul(sample_norm, sd))
|
||||
return sample
|
||||
return None
|
||||
|
|
|
@ -55,7 +55,7 @@ class ReduceLogSumExp(Cell):
|
|||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceLogSumExp(keep_dims=True)
|
||||
>>> op = nn.ReduceLogSumExp(keep_dims=True)
|
||||
>>> output = op(input_x, 1)
|
||||
"""
|
||||
|
||||
|
|
|
@ -27,6 +27,7 @@ from .clip_ops import clip_by_value
|
|||
from .multitype_ops.add_impl import hyper_add
|
||||
from .multitype_ops.ones_like_impl import ones_like
|
||||
from .multitype_ops.zeros_like_impl import zeros_like
|
||||
from .random_ops import normal
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
@ -47,4 +48,5 @@ __all__ = [
|
|||
'zeros_like',
|
||||
'ones_like',
|
||||
'zip_operation',
|
||||
'clip_by_value']
|
||||
'normal',
|
||||
'clip_by_value',]
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Operations for random number generatos."""
|
||||
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from .. import operations as P
|
||||
|
||||
# set graph-level RNG seed
|
||||
_GRAPH_SEED = 0
|
||||
|
||||
@constexpr
|
||||
def set_seed(seed):
|
||||
global _GRAPH_SEED
|
||||
_GRAPH_SEED = seed
|
||||
|
||||
@constexpr
|
||||
def get_seed():
|
||||
return _GRAPH_SEED
|
||||
|
||||
|
||||
def normal(shape, mean, stddev, seed):
|
||||
"""
|
||||
Generates random numbers according to the Normal (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
|
||||
Args:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type.
|
||||
- **seed** (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> stddev = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.normal(shape, mean, stddev, seed=5)
|
||||
"""
|
||||
set_seed(10)
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
stdnormal = P.StandardNormal(seed1, seed2)
|
||||
rnd = stdnormal(shape)
|
||||
value = rnd * stddev + mean
|
||||
return value
|
|
@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e,
|
||||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, Normal)
|
||||
from .random_ops import (RandomChoiceWithMask, StandardNormal)
|
||||
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
|
||||
BiasAdd, Conv2D,
|
||||
DepthwiseConv2dNative,
|
||||
|
@ -170,7 +170,7 @@ __all__ = [
|
|||
'HSigmoid',
|
||||
'Tanh',
|
||||
'RandomChoiceWithMask',
|
||||
'Normal',
|
||||
'StandardNormal',
|
||||
'ResizeBilinear',
|
||||
'ScalarSummary',
|
||||
'ImageSummary',
|
||||
|
|
|
@ -21,6 +21,48 @@ from ...common import dtype as mstype
|
|||
from ..primitive import PrimitiveWithInfer, prim_attr_register
|
||||
|
||||
|
||||
class StandardNormal(PrimitiveWithInfer):
|
||||
r"""
|
||||
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
||||
Outputs:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> stdnormal = P.StandardNormal(seed=2)
|
||||
>>> output = stdnormal(shape)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init StandardNormal"""
|
||||
self.init_prim_io_names(inputs=['shape'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape):
|
||||
shape_v = shape["value"]
|
||||
if shape_v is None:
|
||||
raise ValueError(f"For {self.name}, shape must be const.")
|
||||
validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||
for i, shape_i in enumerate(shape_v):
|
||||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
|
||||
out = {
|
||||
'shape': shape_v,
|
||||
'dtype': mstype.float32,
|
||||
'value': None}
|
||||
return out
|
||||
|
||||
|
||||
class RandomChoiceWithMask(PrimitiveWithInfer):
|
||||
"""
|
||||
Generates a random samply as index tensor with a mask tensor from a given tensor.
|
||||
|
@ -64,47 +106,3 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
|
|||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name)
|
||||
return (mstype.int32, mstype.bool_)
|
||||
|
||||
|
||||
class Normal(PrimitiveWithInfer):
|
||||
"""
|
||||
Generates random samples from a normal(Gaussian) distribution.
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed.
|
||||
- **mean** (Tensor) - The mean of the distribution, with float32 data type.
|
||||
- **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the given shape from the specific distribution and float32 data type.
|
||||
|
||||
Examples:
|
||||
>>> normal = P.Normal()
|
||||
>>> mean = Tensor(0., mstype.float32)
|
||||
>>> stddev = Tensor(1., mstype.float32)
|
||||
>>> out = normal((32, 3, 3), mean, stddev)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
"""Init Normal"""
|
||||
validator.check_value_type("seed", seed, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, mean, stddev):
|
||||
shape_value = shape["value"]
|
||||
if shape_value is None:
|
||||
raise ValueError(f"For {self.name}, shape must be const.")
|
||||
validator.check_value_type("shape", shape_value, [tuple], self.name)
|
||||
for i, shape_i in enumerate(shape_value):
|
||||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name)
|
||||
|
||||
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
|
||||
validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name)
|
||||
|
||||
out = {"shape": shape_value,
|
||||
"dtype": mstype.float32,
|
||||
"value": None}
|
||||
return out
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, mean, stddev):
|
||||
return C.normal(self.shape, mean, stddev, self.seed)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
mean = 1.0
|
||||
stddev = 1.0
|
||||
net = Net(shape, seed)
|
||||
tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
|
||||
output = net(tmean, tstddev)
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 1, 2)
|
||||
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
stddev = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
|
||||
output = net(tmean, tstddev)
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -530,15 +530,13 @@ class InplaceSubNet(nn.Cell):
|
|||
|
||||
|
||||
class NormalNet(nn.Cell):
|
||||
def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(NormalNet, self).__init__()
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.shape = shape
|
||||
self.mean = Tensor(mean, mstype.float32)
|
||||
self.stddev = Tensor(stddev, mstype.float32)
|
||||
self.seed = seed
|
||||
|
||||
def construct(self):
|
||||
out = self.normal(self.shape, self.mean, self.stddev)
|
||||
def construct(self, mean, stddev):
|
||||
out = C.normal(self.shape, mean, stddev, self.seed)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -813,6 +811,10 @@ test_case_math_ops = [
|
|||
(1, 1, 1)],
|
||||
'desc_inputs': [[64, 128, 1024]],
|
||||
'skip': ['backward']}),
|
||||
('Normal', {
|
||||
'block': NormalNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('RandomChoiceWithMask', {
|
||||
'block': P.RandomChoiceWithMask(256),
|
||||
'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
|
||||
|
@ -1101,10 +1103,6 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
('Normal', {
|
||||
'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
|
||||
'desc_inputs': [],
|
||||
'skip': ['backward']}),
|
||||
('Mod', {
|
||||
'block': P.Mod(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
|
|
Loading…
Reference in New Issue