forked from mindspore-Ecosystem/mindspore
!2315 add Pack op for aicpu when axis=-1
Merge pull request !2315 from yanzhenxiang2020/add_pack_open
This commit is contained in:
commit
66e07efccd
|
@ -38,10 +38,10 @@ void AicpuMetadataInfo(const CNodePtr &kernel_node, std::vector<std::shared_ptr<
|
|||
return;
|
||||
}
|
||||
// For compatibility with the current framework
|
||||
if (op_name == kPrint || op_name == kGetNext) {
|
||||
if (op_name == kPrint || op_name == kGetNext || op_name == kPack) {
|
||||
std::vector<std::string> inputs_format{};
|
||||
std::vector<TypeId> inputs_type{};
|
||||
if (op_name == kPrint) {
|
||||
if (op_name == kPrint || op_name == kPack) {
|
||||
for (size_t input_index = 0; input_index < AnfAlgo::GetInputTensorNum(kernel_node); ++input_index) {
|
||||
inputs_format.emplace_back(kOpFormat_DEFAULT);
|
||||
inputs_type.push_back(AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, input_index));
|
||||
|
|
|
@ -28,6 +28,7 @@ constexpr auto kInitDataSetQueue = "InitDataSetQueue";
|
|||
constexpr auto kInitData = "InitData";
|
||||
constexpr auto kGetNext = "GetNext";
|
||||
constexpr auto kPrint = "Print";
|
||||
constexpr auto kPack = "Pack";
|
||||
constexpr auto kOutputTypes = "output_types";
|
||||
constexpr auto kOutputShapes = "output_shapes";
|
||||
constexpr auto kChannelName = "channel_name";
|
||||
|
|
|
@ -24,3 +24,4 @@ from .flatten import _flatten_aicpu
|
|||
from .squeeze import _squeeze_aicpu
|
||||
from .expand_dims import _expand_dims_aicpu
|
||||
from .random_choice_with_mask import _random_choice_with_mask_aicpu
|
||||
from .pack import _pack_aicpu
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Pack op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
pack_op_info = AiCPURegOp("Pack") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("axis", "int") \
|
||||
.input(0, "x", "dynamic") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(pack_op_info)
|
||||
def _pack_aicpu():
|
||||
"""Pack AiCPU register"""
|
||||
return
|
|
@ -24,6 +24,7 @@ top_k_op_info = AiCPURegOp("TopK") \
|
|||
.output(0, "values", "required") \
|
||||
.output(1, "indices", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.F16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
|
|
@ -0,0 +1,176 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, x, axis):
|
||||
super(Net, self).__init__()
|
||||
self.pack = P.Pack(axis)
|
||||
self.x = x
|
||||
|
||||
def construct(self):
|
||||
return self.pack(self.x)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(3, 5, 4) > 0
|
||||
y = np.random.randn(3, 5, 4) > 0
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(3, 5, 4).astype(np.int8)
|
||||
y = np.random.randn(3, 5, 4).astype(np.int8)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(3, 5, 4).astype(np.uint8)
|
||||
y = np.random.randn(3, 5, 4).astype(np.uint8)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(3, 5, 4).astype(np.int16)
|
||||
y = np.random.randn(3, 5, 4).astype(np.int16)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(3, 5, 4).astype(np.uint16)
|
||||
y = np.random.randn(3, 5, 4).astype(np.uint16)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(3, 5, 4).astype(np.int32)
|
||||
y = np.random.randn(3, 5, 4).astype(np.int32)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(3, 5, 4).astype(np.uint32)
|
||||
y = np.random.randn(3, 5, 4).astype(np.uint32)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(3, 5, 4).astype(np.int64)
|
||||
y = np.random.randn(3, 5, 4).astype(np.int64)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(3, 5, 4).astype(np.uint64)
|
||||
y = np.random.randn(3, 5, 4).astype(np.uint64)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(3, 5, 4).astype(np.float16)
|
||||
y = np.random.randn(3, 5, 4).astype(np.float16)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(3, 5, 4).astype(np.float32)
|
||||
y = np.random.randn(3, 5, 4).astype(np.float32)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
x = np.random.randn(3, 5, 4).astype(np.float64)
|
||||
y = np.random.randn(3, 5, 4).astype(np.float64)
|
||||
axis = -1
|
||||
net = Net((Tensor(x), Tensor(y)), axis)
|
||||
output = net()
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
assert np.array_equal(output.asnumpy(), np.stack([x, y], axis))
|
Loading…
Reference in New Issue