!10225 fix ncf export bug, modify export script for bert, mass, transformer to support mindir and GPU

From: @yuzhenhua666
Reviewed-by: @liangchenghui,@c_34
Signed-off-by: @c_34
This commit is contained in:
mindspore-ci-bot 2020-12-19 16:51:49 +08:00 committed by Gitee
commit 66741fb545
5 changed files with 96 additions and 138 deletions

View File

@ -16,30 +16,30 @@
import argparse
import numpy as np
from mindspore import Tensor, context
import mindspore.common.dtype as mstype
from mindspore.train.serialization import load_checkpoint, export
from mindspore import Tensor, context, load_checkpoint, export
from src.finetune_eval_model import BertCLSModel, BertSquadModel, BertNERModel
from src.finetune_eval_config import bert_net_cfg
from src.bert_for_finetune import BertNER
from src.utils import convert_labels_to_index
parser = argparse.ArgumentParser(description='Bert export')
parser = argparse.ArgumentParser(description="Bert export")
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument('--use_crf', type=str, default="false", help='Use cfg, default is false.')
parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD"], default="NER",
help='at presentsupport NER only')
parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.')
parser.add_argument("--use_crf", type=str, default="false", help="Use cfg, default is false.")
parser.add_argument("--downstream_task", type=str, choices=["NER", "CLS", "SQUAD"], default="NER",
help="at presentsupport NER only")
parser.add_argument("--num_class", type=int, default=41, help="The number of class, default is 41.")
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.')
parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.')
parser.add_argument('--output_file', type=str, default='Bert', help='bert output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--label_file_path", type=str, default="", help="label file path, used in clue benchmark.")
parser.add_argument("--ckpt_file", type=str, required=True, help="Bert ckpt file.")
parser.add_argument("--file_name", type=str, default="Bert", help="bert output air name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
parser.add_argument("--device_target", type=str, default="Ascend",
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
label_list = []
with open(args.label_file_path) as f:
@ -56,8 +56,7 @@ if args.use_crf.lower() == "true":
else:
number_labels = args.num_class
if __name__ == '__main__':
if __name__ == "__main__":
if args.downstream_task == "NER":
if args.use_crf.lower() == "true":
net = BertNER(bert_net_cfg, args.batch_size, False, num_labels=number_labels,
@ -83,4 +82,4 @@ if __name__ == '__main__':
input_data = [input_ids, input_mask, token_type_id, label_ids]
else:
input_data = [input_ids, input_mask, token_type_id]
export(net, *input_data, file_name=args.output_file, file_format=args.file_format)
export(net, *input_data, file_name=args.file_name, file_format=args.file_format)

View File

@ -26,13 +26,18 @@ from src.utils.load_weights import load_infer_weights
from src.transformer.transformer_for_infer import TransformerInferModel
from config import TransformerConfig
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='mass')
parser = argparse.ArgumentParser(description="mass export")
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--file_name", type=str, default="mass", help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
parser.add_argument("--device_target", type=str, default="Ascend",
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
parser.add_argument('--gigaword_infer_config', type=str, required=True, help='gigaword config file')
parser.add_argument('--vocab_file', type=str, required=True, help='vocabulary file')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
def get_config(config_file):
tfm_config = TransformerConfig.from_json_file(config_file)
tfm_config.compute_type = mstype.float16
@ -40,12 +45,10 @@ def get_config(config_file):
return tfm_config
if __name__ == '__main__':
vocab = Dictionary.load_from_persisted_dict(args.vocab_file)
config = get_config(args.gigaword_infer_config)
dec_len = config.max_decode_length
output_file_name = 'giga_' + str(dec_len) + '.air'
tfm_model = TransformerInferModel(config=config, use_one_hot_embeddings=False)
tfm_model.init_parameters_data()
@ -79,4 +82,4 @@ if __name__ == '__main__':
source_ids = Tensor(np.ones((1, config.seq_length)).astype(np.int32))
source_mask = Tensor(np.ones((1, config.seq_length)).astype(np.int32))
export(tfm_model, source_ids, source_mask, file_name=output_file_name, file_format="AIR")
export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)

View File

@ -29,9 +29,11 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--file_name", type=str, default="transformer", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, default="Ascend",
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
if __name__ == '__main__':
tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)
@ -42,6 +44,4 @@ if __name__ == '__main__':
source_ids = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
source_mask = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
dec_len = transformer_net_cfg.max_decode_length
export(tfm_model, source_ids, source_mask, file_name=args.file_name + str(dec_len), file_format=args.file_format)
export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ncf export file"""
import argparse
import numpy as np
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
import src.constants as rconst
from src.config import cfg
from ncf import NCFModel, PredictWithSigmoid
parser = argparse.ArgumentParser(description='ncf export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"], help="Dataset.")
parser.add_argument("--file_name", type=str, default="ncf", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, default="Ascend",
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
if __name__ == "__main__":
topk = rconst.TOP_K
num_eval_neg = rconst.NUM_EVAL_NEGATIVES
if args.dataset == "ml-1m":
num_eval_users = 6040
num_eval_items = 3706
elif args.dataset == "ml-20m":
num_eval_users = 138493
num_eval_items = 26744
else:
raise ValueError("not supported dataset")
ncf_net = NCFModel(num_users=num_eval_users,
num_items=num_eval_items,
num_factors=cfg.num_factors,
model_layers=cfg.layers,
mf_regularization=0,
mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
mf_dim=16)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(ncf_net, param_dict)
network = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
users = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
items = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
masks = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.float32))
input_data = [users, items, masks]
export(network, *input_data, file_name=args.file_name, file_format=args.file_format)

View File

@ -1,112 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Export NCF air file."""
import os
import argparse
from absl import logging
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from mindspore import Tensor, context, Model
import constants as rconst
from dataset import create_dataset
from metrics import NCFMetric
from ncf import NCFModel, NetWithLossClass, TrainStepWrap, PredictWithSigmoid
logging.set_verbosity(logging.INFO)
def argparse_init():
"""Argparse init method"""
parser = argparse.ArgumentParser(description='NCF')
parser.add_argument("--data_path", type=str, default="./dataset/") # The location of the input data.
parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"]) # Dataset to be trained and evaluated. ["ml-1m", "ml-20m"]
parser.add_argument("--eval_batch_size", type=int, default=160000) # The batch size used for evaluation.
parser.add_argument("--layers", type=int, default=[64, 32, 16]) # The sizes of hidden layers for MLP
parser.add_argument("--num_factors", type=int, default=16) # The Embedding size of MF model.
parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file.
parser.add_argument("--eval_file_name", type=str, default="eval.log") # Eval output file.
parser.add_argument("--checkpoint_file_path", type=str, default="./checkpoint/NCF.ckpt") # The location of the checkpoint file.
return parser
def export_air_file():
""""Export file for eval"""
parser = argparse_init()
args, _ = parser.parse_known_args()
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
layers = args.layers
num_factors = args.num_factors
topk = rconst.TOP_K
num_eval_neg = rconst.NUM_EVAL_NEGATIVES
ds_eval, num_eval_users, num_eval_items = create_dataset(test_train=False, data_dir=args.data_path,
dataset=args.dataset, train_epochs=0,
eval_batch_size=args.eval_batch_size)
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
ncf_net = NCFModel(num_users=num_eval_users,
num_items=num_eval_items,
num_factors=num_factors,
model_layers=layers,
mf_regularization=0,
mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
mf_dim=16)
param_dict = load_checkpoint(args.checkpoint_file_path)
load_param_into_net(ncf_net, param_dict)
loss_net = NetWithLossClass(ncf_net)
train_net = TrainStepWrap(loss_net)
train_net.set_train()
eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
ncf_metric = NCFMetric()
model = Model(train_net, eval_network=eval_net, metrics={"ncf": ncf_metric})
ncf_metric.clear()
out = model.eval(ds_eval)
eval_file_path = os.path.join(args.output_path, args.eval_file_name)
eval_file = open(eval_file_path, "a+")
eval_file.write("EvalCallBack: HR = {}, NDCG = {}\n".format(out['ncf'][0], out['ncf'][1]))
eval_file.close()
print("EvalCallBack: HR = {}, NDCG = {}".format(out['ncf'][0], out['ncf'][1]))
param_dict = load_checkpoint(args.checkpoint_file_path)
# load the parameter into net
load_param_into_net(eval_net, param_dict)
input_tensor_list = []
for data in ds_eval:
for j in data:
input_tensor_list.append(Tensor(j))
print(len(a))
break
print(input_tensor_list)
export(eval_net, *input_tensor_list, file_name='NCF.air', file_format='AIR')
if __name__ == '__main__':
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
device_target="Davinci",
save_graphs=True,
device_id=devid)
export_air_file()