forked from mindspore-Ecosystem/mindspore
vocdataset support float bbox
This commit is contained in:
parent
aef002ad6c
commit
62d55fdbce
|
@ -69,7 +69,7 @@ Status VOCOp::Builder::Build(std::shared_ptr<VOCOp> *ptr) {
|
|||
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
|
||||
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
|
||||
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
|
||||
ColDescriptor(std::string(kColumnAnnotation), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
|
||||
ColDescriptor(std::string(kColumnAnnotation), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
|
||||
}
|
||||
*ptr = std::make_shared<VOCOp>(builder_task_type_, builder_task_mode_, builder_dir_, builder_labels_to_read_,
|
||||
builder_num_workers_, builder_rows_per_buffer_, builder_op_connector_size_,
|
||||
|
@ -308,30 +308,30 @@ Status VOCOp::ParseAnnotationBbox(const std::string &path) {
|
|||
}
|
||||
while (object != nullptr) {
|
||||
std::string label_name;
|
||||
uint32_t xmin = 0, ymin = 0, xmax = 0, ymax = 0, truncated = 0, difficult = 0;
|
||||
float xmin = 0.0, ymin = 0.0, xmax = 0.0, ymax = 0.0, truncated = 0.0, difficult = 0.0;
|
||||
XMLElement *name_node = object->FirstChildElement("name");
|
||||
if (name_node != nullptr && name_node->GetText() != 0) label_name = name_node->GetText();
|
||||
XMLElement *truncated_node = object->FirstChildElement("truncated");
|
||||
if (truncated_node != nullptr) truncated = truncated_node->UnsignedText();
|
||||
if (truncated_node != nullptr) truncated = truncated_node->FloatText();
|
||||
XMLElement *difficult_node = object->FirstChildElement("difficult");
|
||||
if (difficult_node != nullptr) difficult = difficult_node->UnsignedText();
|
||||
if (difficult_node != nullptr) difficult = difficult_node->FloatText();
|
||||
|
||||
XMLElement *bbox_node = object->FirstChildElement("bndbox");
|
||||
if (bbox_node != nullptr) {
|
||||
XMLElement *xmin_node = bbox_node->FirstChildElement("xmin");
|
||||
if (xmin_node != nullptr) xmin = xmin_node->UnsignedText();
|
||||
if (xmin_node != nullptr) xmin = xmin_node->FloatText();
|
||||
XMLElement *ymin_node = bbox_node->FirstChildElement("ymin");
|
||||
if (ymin_node != nullptr) ymin = ymin_node->UnsignedText();
|
||||
if (ymin_node != nullptr) ymin = ymin_node->FloatText();
|
||||
XMLElement *xmax_node = bbox_node->FirstChildElement("xmax");
|
||||
if (xmax_node != nullptr) xmax = xmax_node->UnsignedText();
|
||||
if (xmax_node != nullptr) xmax = xmax_node->FloatText();
|
||||
XMLElement *ymax_node = bbox_node->FirstChildElement("ymax");
|
||||
if (ymax_node != nullptr) ymax = ymax_node->UnsignedText();
|
||||
if (ymax_node != nullptr) ymax = ymax_node->FloatText();
|
||||
} else {
|
||||
RETURN_STATUS_UNEXPECTED("bndbox dismatch in " + path);
|
||||
}
|
||||
if (label_name != "" && (class_index_.empty() || class_index_.find(label_name) != class_index_.end()) && xmin > 0 &&
|
||||
ymin > 0 && xmax > xmin && ymax > ymin) {
|
||||
std::vector<uint32_t> bbox_list = {xmin, ymin, xmax - xmin, ymax - ymin, truncated, difficult};
|
||||
std::vector<float> bbox_list = {xmin, ymin, xmax - xmin, ymax - ymin, truncated, difficult};
|
||||
bbox.emplace_back(std::make_pair(label_name, bbox_list));
|
||||
label_index_[label_name] = 0;
|
||||
}
|
||||
|
@ -376,17 +376,17 @@ Status VOCOp::ReadImageToTensor(const std::string &path, const ColDescriptor &co
|
|||
Status VOCOp::ReadAnnotationToTensor(const std::string &path, const ColDescriptor &col,
|
||||
std::shared_ptr<Tensor> *tensor) {
|
||||
Bbox bbox_info = label_map_[path];
|
||||
std::vector<uint32_t> bbox_row;
|
||||
std::vector<float> bbox_row;
|
||||
dsize_t bbox_column_num = 0, bbox_num = 0;
|
||||
for (auto box : bbox_info) {
|
||||
if (label_index_.find(box.first) != label_index_.end()) {
|
||||
std::vector<uint32_t> bbox;
|
||||
if (class_index_.find(box.first) != class_index_.end()) {
|
||||
bbox.emplace_back(class_index_[box.first]);
|
||||
} else {
|
||||
bbox.emplace_back(label_index_[box.first]);
|
||||
}
|
||||
std::vector<float> bbox;
|
||||
bbox.insert(bbox.end(), box.second.begin(), box.second.end());
|
||||
if (class_index_.find(box.first) != class_index_.end()) {
|
||||
bbox.push_back(static_cast<float>(class_index_[box.first]));
|
||||
} else {
|
||||
bbox.push_back(static_cast<float>(label_index_[box.first]));
|
||||
}
|
||||
bbox_row.insert(bbox_row.end(), bbox.begin(), bbox.end());
|
||||
if (bbox_column_num == 0) {
|
||||
bbox_column_num = static_cast<dsize_t>(bbox.size());
|
||||
|
|
|
@ -40,7 +40,7 @@ namespace dataset {
|
|||
template <typename T>
|
||||
class Queue;
|
||||
|
||||
using Bbox = std::vector<std::pair<std::string, std::vector<uint32_t>>>;
|
||||
using Bbox = std::vector<std::pair<std::string, std::vector<float>>>;
|
||||
|
||||
class VOCOp : public ParallelOp, public RandomAccessOp {
|
||||
public:
|
||||
|
|
|
@ -1,292 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing the bounding box augment op in DE
|
||||
"""
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
import numpy as np
|
||||
import mindspore.log as logger
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for bbox in bboxes:
|
||||
if bbox.size == 7:
|
||||
tmp = bbox[0]
|
||||
bbox[0] = bbox[1]
|
||||
bbox[1] = bbox[2]
|
||||
bbox[2] = bbox[3]
|
||||
bbox[3] = bbox[4]
|
||||
bbox[4] = tmp
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_bounding_box_augment_with_rotation_op(plot_vis=False):
|
||||
"""
|
||||
Test BoundingBoxAugment op (passing rotation op as transform)
|
||||
Prints images side by side with and without Aug applied + bboxes to compare and test
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_with_rotation_op")
|
||||
|
||||
original_seed = config_get_set_seed(0)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# Ratio is set to 1 to apply rotation on all bounding boxes.
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "bounding_box_augment_rotation_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_bounding_box_augment_with_crop_op(plot_vis=False):
|
||||
"""
|
||||
Test BoundingBoxAugment op (passing crop op as transform)
|
||||
Prints images side by side with and without Aug applied + bboxes to compare and test
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_with_crop_op")
|
||||
|
||||
original_seed = config_get_set_seed(1)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# Ratio is set to 1 to apply rotation on all bounding boxes.
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(90), 1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "bounding_box_augment_crop_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
|
||||
"""
|
||||
Test BoundingBoxAugment op (testing with valid ratio, less than 1.
|
||||
Prints images side by side with and without Aug applied + bboxes to compare and test
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_valid_ratio_c")
|
||||
|
||||
original_seed = config_get_set_seed(1)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
filename = "bounding_box_augment_valid_ratio_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_bounding_box_augment_valid_edge_c(plot_vis=False):
|
||||
"""
|
||||
Test BoundingBoxAugment op (testing with valid edge case, box covering full image).
|
||||
Prints images side by side with and without Aug applied + bboxes to compare and test
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_valid_edge_c")
|
||||
|
||||
original_seed = config_get_set_seed(1)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
# Add column for "annotation"
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=lambda img, bbox:
|
||||
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=lambda img, bbox:
|
||||
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
filename = "bounding_box_augment_valid_edge_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_bounding_box_augment_invalid_ratio_c():
|
||||
"""
|
||||
Test BoundingBoxAugment op with invalid input ratio
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_invalid_ratio_c")
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
# ratio range is from 0 - 1
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input is not" in str(error)
|
||||
|
||||
|
||||
def test_bounding_box_augment_invalid_bounds_c():
|
||||
"""
|
||||
Test BoundingBoxAugment op with invalid bboxes.
|
||||
"""
|
||||
logger.info("test_bounding_box_augment_invalid_bounds_c")
|
||||
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
|
||||
1)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# set to false to not show plots
|
||||
test_bounding_box_augment_with_rotation_op(plot_vis=False)
|
||||
test_bounding_box_augment_with_crop_op(plot_vis=False)
|
||||
test_bounding_box_augment_valid_ratio_c(plot_vis=False)
|
||||
test_bounding_box_augment_valid_edge_c(plot_vis=False)
|
||||
test_bounding_box_augment_invalid_ratio_c()
|
||||
test_bounding_box_augment_invalid_bounds_c()
|
|
@ -37,7 +37,7 @@ def test_voc_detection():
|
|||
for item in data1.create_dict_iterator():
|
||||
assert item["image"].shape[0] == IMAGE_SHAPE[num]
|
||||
for bbox in item["annotation"]:
|
||||
count[bbox[0]] += 1
|
||||
count[int(bbox[6])] += 1
|
||||
num += 1
|
||||
assert num == 9
|
||||
assert count == [3, 2, 1, 2, 4, 3]
|
||||
|
@ -55,8 +55,8 @@ def test_voc_class_index():
|
|||
count = [0, 0, 0, 0, 0, 0]
|
||||
for item in data1.create_dict_iterator():
|
||||
for bbox in item["annotation"]:
|
||||
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 5)
|
||||
count[bbox[0]] += 1
|
||||
assert (int(bbox[6]) == 0 or int(bbox[6]) == 1 or int(bbox[6]) == 5)
|
||||
count[int(bbox[6])] += 1
|
||||
num += 1
|
||||
assert num == 6
|
||||
assert count == [3, 2, 0, 0, 0, 3]
|
||||
|
@ -73,8 +73,9 @@ def test_voc_get_class_indexing():
|
|||
count = [0, 0, 0, 0, 0, 0]
|
||||
for item in data1.create_dict_iterator():
|
||||
for bbox in item["annotation"]:
|
||||
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 2 or bbox[0] == 3 or bbox[0] == 4 or bbox[0] == 5)
|
||||
count[bbox[0]] += 1
|
||||
assert (int(bbox[6]) == 0 or int(bbox[6]) == 1 or int(bbox[6]) == 2 or int(bbox[6]) == 3
|
||||
or int(bbox[6]) == 4 or int(bbox[6]) == 5)
|
||||
count[int(bbox[6])] += 1
|
||||
num += 1
|
||||
assert num == 9
|
||||
assert count == [3, 2, 1, 2, 4, 3]
|
||||
|
|
|
@ -1,220 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing RandomCropAndResizeWithBBox op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
from mindspore import log as logger
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
# updated VOC dataset with correct annotations
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for bbox in bboxes:
|
||||
if bbox.size == 7:
|
||||
tmp = bbox[0]
|
||||
bbox[0] = bbox[1]
|
||||
bbox[1] = bbox[2]
|
||||
bbox[2] = bbox[3]
|
||||
bbox[3] = bbox[4]
|
||||
bbox[4] = tmp
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_random_resized_crop_with_bbox_op_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
|
||||
tests with MD5 check, expected to pass
|
||||
"""
|
||||
logger.info("test_random_resized_crop_with_bbox_op_c")
|
||||
|
||||
original_seed = config_get_set_seed(23415)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
|
||||
filename = "random_resized_crop_with_bbox_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_random_resized_crop_with_bbox_op_edge_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
|
||||
tests on dynamically generated edge case, expected to pass
|
||||
"""
|
||||
logger.info("test_random_resized_crop_with_bbox_op_edge_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# maps to convert data into valid edge case data
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
|
||||
|
||||
# Test Op added to list of Operations here
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_resized_crop_with_bbox_op_invalid_c():
|
||||
"""
|
||||
Tests RandomResizedCropWithBBox on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_random_resized_crop_with_bbox_op_invalid_c")
|
||||
|
||||
# Load dataset, only Augmented Dataset as test will raise ValueError
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
# If input range of scale is not in the order of (min, max), ValueError will be raised.
|
||||
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 0.5), (0.5, 0.5))
|
||||
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
for _ in dataVoc2.create_dict_iterator():
|
||||
break
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input range is not valid" in str(err)
|
||||
|
||||
|
||||
def test_random_resized_crop_with_bbox_op_invalid2_c():
|
||||
"""
|
||||
Tests RandomResizedCropWithBBox Op on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_random_resized_crop_with_bbox_op_invalid2_c")
|
||||
# Load dataset # only loading the to AugDataset as test will fail on this
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
# If input range of ratio is not in the order of (min, max), ValueError will be raised.
|
||||
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 1), (1, 0.5))
|
||||
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
for _ in dataVoc2.create_dict_iterator():
|
||||
break
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input range is not valid" in str(err)
|
||||
|
||||
|
||||
def test_random_resized_crop_with_bbox_op_bad_c():
|
||||
"""
|
||||
Test RandomCropWithBBox op with invalid bounding boxes, expected to catch multiple errors.
|
||||
"""
|
||||
logger.info("test_random_resized_crop_with_bbox_op_bad_c")
|
||||
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
|
||||
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_resized_crop_with_bbox_op_c(plot_vis=True)
|
||||
test_random_resized_crop_with_bbox_op_edge_c(plot_vis=True)
|
||||
test_random_resized_crop_with_bbox_op_invalid_c()
|
||||
test_random_resized_crop_with_bbox_op_invalid2_c()
|
||||
test_random_resized_crop_with_bbox_op_bad_c()
|
|
@ -1,265 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing RandomCropWithBBox op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
import mindspore.dataset.transforms.vision.utils as mode
|
||||
|
||||
from mindspore import log as logger
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
# updated VOC dataset with correct annotations
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for bbox in bboxes:
|
||||
if bbox.size == 7:
|
||||
tmp = bbox[0]
|
||||
bbox[0] = bbox[1]
|
||||
bbox[1] = bbox[2]
|
||||
bbox[2] = bbox[3]
|
||||
bbox[3] = bbox[4]
|
||||
bbox[4] = tmp
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# define test OP with values to match existing Op UT
|
||||
test_op = c_vision.RandomCropWithBBox([512, 512], [200, 200, 200, 200])
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op2_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
|
||||
with md5 check, expected to pass
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op2_c")
|
||||
original_seed = config_get_set_seed(593447)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# define test OP with values to match existing Op unit - test
|
||||
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], fill_value=(255, 255, 255))
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
|
||||
filename = "random_crop_with_bbox_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op3_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
|
||||
with Padding Mode explicitly passed
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op3_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# define test OP with values to match existing Op unit - test
|
||||
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op_edge_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
|
||||
applied on dynamically generated edge case, expected to pass
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op_edge_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
# define test OP with values to match existing Op unit - test
|
||||
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# maps to convert data into valid edge case data
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
|
||||
|
||||
# Test Op added to list of Operations here
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op_invalid_c():
|
||||
"""
|
||||
Test RandomCropWithBBox Op on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op_invalid_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
# define test OP with values to match existing Op unit - test
|
||||
test_op = c_vision.RandomCropWithBBox([512, 512, 375])
|
||||
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
|
||||
for _ in dataVoc2.create_dict_iterator():
|
||||
break
|
||||
except TypeError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Size should be a single integer" in str(err)
|
||||
|
||||
|
||||
def test_random_crop_with_bbox_op_bad_c():
|
||||
"""
|
||||
Tests RandomCropWithBBox Op with invalid bounding boxes, expected to catch multiple errors.
|
||||
"""
|
||||
logger.info("test_random_crop_with_bbox_op_bad_c")
|
||||
test_op = c_vision.RandomCropWithBBox([512, 512], [200, 200, 200, 200])
|
||||
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_crop_with_bbox_op_c(plot_vis=True)
|
||||
test_random_crop_with_bbox_op2_c(plot_vis=True)
|
||||
test_random_crop_with_bbox_op3_c(plot_vis=True)
|
||||
test_random_crop_with_bbox_op_edge_c(plot_vis=True)
|
||||
test_random_crop_with_bbox_op_invalid_c()
|
||||
test_random_crop_with_bbox_op_bad_c()
|
|
@ -1,233 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing the random horizontal flip with bounding boxes op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.log as logger
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for bbox in bboxes:
|
||||
if bbox.size == 7:
|
||||
tmp = bbox[0]
|
||||
bbox[0] = bbox[1]
|
||||
bbox[1] = bbox[2]
|
||||
bbox[2] = bbox[3]
|
||||
bbox[3] = bbox[4]
|
||||
bbox[4] = tmp
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
|
||||
"""
|
||||
Prints images side by side with and without Aug applied + bboxes to
|
||||
compare and test
|
||||
"""
|
||||
logger.info("test_random_horizontal_flip_with_bbox_op_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False):
|
||||
"""
|
||||
Uses a valid non-default input, expect to pass
|
||||
Prints images side by side with and without Aug applied + bboxes to
|
||||
compare and test
|
||||
"""
|
||||
logger.info("test_random_horizontal_bbox_valid_rand_c")
|
||||
|
||||
original_seed = config_get_set_seed(1)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
|
||||
"""
|
||||
Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
|
||||
Prints images side by side with and without Aug applied + bboxes to compare and test
|
||||
"""
|
||||
logger.info("test_horizontal_flip_with_bbox_valid_edge_c")
|
||||
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
# Add column for "annotation"
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=lambda img, bbox:
|
||||
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=lambda img, bbox:
|
||||
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
|
||||
"""
|
||||
Test RandomHorizontalFlipWithBBox op with invalid input probability
|
||||
"""
|
||||
logger.info("test_random_horizontal_bbox_invalid_prob_c")
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
# Note: Valid range of prob should be [0.0, 1.0]
|
||||
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op]) # Add column for "annotation"
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input is not" in str(error)
|
||||
|
||||
|
||||
def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
|
||||
"""
|
||||
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
|
||||
"""
|
||||
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
|
||||
|
||||
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# set to false to not show plots
|
||||
test_random_horizontal_flip_with_bbox_op_c(plot_vis=False)
|
||||
test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False)
|
||||
test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False)
|
||||
test_random_horizontal_flip_with_bbox_invalid_prob_c()
|
||||
test_random_horizontal_flip_with_bbox_invalid_bounds_c()
|
|
@ -1,198 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing the random resize with bounding boxes op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
from mindspore import log as logger
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for (i, box) in enumerate(bboxes):
|
||||
if box.size == 7:
|
||||
bboxes[i] = np.roll(box, -1)
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_random_resize_with_bbox_op_rand_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomResizeWithBBox Op applied,
|
||||
tests with MD5 check, expected to pass
|
||||
"""
|
||||
logger.info("test_random_resize_with_bbox_rand_c")
|
||||
original_seed = config_get_set_seed(1)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomResizeWithBBox(200)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "random_resize_with_bbox_op_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_random_resize_with_bbox_op_edge_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomresizeWithBBox Op applied,
|
||||
applied on dynamically generated edge case, expected to pass. edge case is when bounding
|
||||
box has dimensions as the image itself.
|
||||
"""
|
||||
logger.info("test_random_resize_with_bbox_op_edge_c")
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomResizeWithBBox(500)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# maps to convert data into valid edge case data
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (
|
||||
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
|
||||
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (
|
||||
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_resize_with_bbox_op_invalid_c():
|
||||
"""
|
||||
Test RandomResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_random_resize_with_bbox_op_invalid_c")
|
||||
|
||||
try:
|
||||
# zero value for resize
|
||||
c_vision.RandomResizeWithBBox(0)
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input is not" in str(err)
|
||||
|
||||
try:
|
||||
# one of the size values is zero
|
||||
c_vision.RandomResizeWithBBox((0, 100))
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input is not" in str(err)
|
||||
|
||||
try:
|
||||
# negative value for resize
|
||||
c_vision.RandomResizeWithBBox(-10)
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input is not" in str(err)
|
||||
|
||||
try:
|
||||
# invalid input shape
|
||||
c_vision.RandomResizeWithBBox((100, 100, 100))
|
||||
|
||||
except TypeError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Size should be" in str(err)
|
||||
|
||||
|
||||
def test_random_resize_with_bbox_op_bad_c():
|
||||
"""
|
||||
Tests RandomResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
|
||||
"""
|
||||
logger.info("test_random_resize_with_bbox_op_bad_c")
|
||||
test_op = c_vision.RandomResizeWithBBox((400, 300))
|
||||
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_resize_with_bbox_op_rand_c(plot_vis=False)
|
||||
test_random_resize_with_bbox_op_edge_c(plot_vis=False)
|
||||
test_random_resize_with_bbox_op_invalid_c()
|
||||
test_random_resize_with_bbox_op_bad_c()
|
|
@ -1,227 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing RandomVerticalFlipWithBBox op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
from mindspore import log as logger
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
# updated VOC dataset with correct annotations
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for bbox in bboxes:
|
||||
if bbox.size == 7:
|
||||
tmp = bbox[0]
|
||||
bbox[0] = bbox[1]
|
||||
bbox[1] = bbox[2]
|
||||
bbox[2] = bbox[3]
|
||||
bbox[3] = bbox[4]
|
||||
bbox[4] = tmp
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_random_vertical_flip_with_bbox_op_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied
|
||||
"""
|
||||
logger.info("test_random_vertical_flip_with_bbox_op_c")
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomVerticalFlipWithBBox(1)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_vertical_flip_with_bbox_op_rand_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied,
|
||||
tests with MD5 check, expected to pass
|
||||
"""
|
||||
logger.info("test_random_vertical_flip_with_bbox_op_rand_c")
|
||||
original_seed = config_get_set_seed(29847)
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomVerticalFlipWithBBox(0.8)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "random_vertical_flip_with_bbox_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
# Restore config setting
|
||||
ds.config.set_seed(original_seed)
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
|
||||
|
||||
def test_random_vertical_flip_with_bbox_op_edge_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied,
|
||||
applied on dynamically generated edge case, expected to pass
|
||||
"""
|
||||
logger.info("test_random_vertical_flip_with_bbox_op_edge_c")
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.RandomVerticalFlipWithBBox(1)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# maps to convert data into valid edge case data
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
|
||||
|
||||
# Test Op added to list of Operations here
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_random_vertical_flip_with_bbox_op_invalid_c():
|
||||
"""
|
||||
Test RandomVerticalFlipWithBBox Op on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_random_vertical_flip_with_bbox_op_invalid_c")
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
try:
|
||||
test_op = c_vision.RandomVerticalFlipWithBBox(2)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
for _ in dataVoc2.create_dict_iterator():
|
||||
break
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "Input is not" in str(err)
|
||||
|
||||
|
||||
def test_random_vertical_flip_with_bbox_op_bad_c():
|
||||
"""
|
||||
Tests RandomVerticalFlipWithBBox Op with invalid bounding boxes, expected to catch multiple errors
|
||||
"""
|
||||
logger.info("test_random_vertical_flip_with_bbox_op_bad_c")
|
||||
test_op = c_vision.RandomVerticalFlipWithBBox(1)
|
||||
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_vertical_flip_with_bbox_op_c(plot_vis=True)
|
||||
test_random_vertical_flip_with_bbox_op_rand_c(plot_vis=True)
|
||||
test_random_vertical_flip_with_bbox_op_edge_c(plot_vis=True)
|
||||
test_random_vertical_flip_with_bbox_op_invalid_c()
|
||||
test_random_vertical_flip_with_bbox_op_bad_c()
|
|
@ -1,169 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing the resize with bounding boxes op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
from mindspore import log as logger
|
||||
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
|
||||
save_and_check_md5
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
DATA_DIR = "../data/dataset/testVOC2012_2"
|
||||
|
||||
|
||||
def fix_annotate(bboxes):
|
||||
"""
|
||||
Fix annotations to format followed by mindspore.
|
||||
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
|
||||
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
"""
|
||||
for (i, box) in enumerate(bboxes):
|
||||
if box.size == 7:
|
||||
bboxes[i] = np.roll(box, -1)
|
||||
else:
|
||||
print("ERROR: Invalid Bounding Box size provided")
|
||||
break
|
||||
return bboxes
|
||||
|
||||
|
||||
def test_resize_with_bbox_op_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
|
||||
tests with MD5 check, expected to pass
|
||||
"""
|
||||
logger.info("test_resize_with_bbox_op_c")
|
||||
|
||||
# Load dataset
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.ResizeWithBBox(200)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
# map to apply ops
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[test_op])
|
||||
|
||||
filename = "resize_with_bbox_op_01_c_result.npz"
|
||||
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_resize_with_bbox_op_edge_c(plot_vis=False):
|
||||
"""
|
||||
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
|
||||
applied on dynamically generated edge case, expected to pass. edge case is when bounding
|
||||
box has dimensions as the image itself.
|
||||
"""
|
||||
logger.info("test_resize_with_bbox_op_edge_c")
|
||||
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
|
||||
decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.ResizeWithBBox(500)
|
||||
|
||||
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
||||
# maps to convert data into valid edge case data
|
||||
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (
|
||||
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
|
||||
|
||||
# Test Op added to list of Operations here
|
||||
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=[lambda img, bboxes: (
|
||||
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
|
||||
|
||||
unaugSamp, augSamp = [], []
|
||||
|
||||
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
|
||||
unaugSamp.append(unAug)
|
||||
augSamp.append(Aug)
|
||||
|
||||
if plot_vis:
|
||||
visualize_with_bounding_boxes(unaugSamp, augSamp)
|
||||
|
||||
|
||||
def test_resize_with_bbox_op_invalid_c():
|
||||
"""
|
||||
Test ResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
|
||||
"""
|
||||
logger.info("test_resize_with_bbox_op_invalid_c")
|
||||
|
||||
try:
|
||||
# invalid interpolation value
|
||||
c_vision.ResizeWithBBox(400, interpolation="invalid")
|
||||
|
||||
except ValueError as err:
|
||||
logger.info("Got an exception in DE: {}".format(str(err)))
|
||||
assert "interpolation" in str(err)
|
||||
|
||||
|
||||
def test_resize_with_bbox_op_bad_c():
|
||||
"""
|
||||
Tests ResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
|
||||
"""
|
||||
logger.info("test_resize_with_bbox_op_bad_c")
|
||||
test_op = c_vision.ResizeWithBBox((200, 300))
|
||||
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_resize_with_bbox_op_c(plot_vis=False)
|
||||
test_resize_with_bbox_op_edge_c(plot_vis=False)
|
||||
test_resize_with_bbox_op_invalid_c()
|
||||
test_resize_with_bbox_op_bad_c()
|
Loading…
Reference in New Issue