forked from mindspore-Ecosystem/mindspore
add mod op kernel for gpu
This commit is contained in:
parent
ba5b751418
commit
6279ff4bbb
|
@ -176,6 +176,50 @@ struct FloorDivFunc<half2> {
|
|||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct ModFunc {
|
||||
__device__ __host__ __forceinline__ T operator()(const T &lhs, const T &rhs) {
|
||||
T data_div = lhs / rhs;
|
||||
T data_div_min = data_div < 0.0 ? data_div : 0.0;
|
||||
T data_div_max = data_div > 0.0 ? data_div : 0.0;
|
||||
T data_div_max_floor = floorf(data_div_max);
|
||||
T data_div_min_ceil = ceilf(data_div_min);
|
||||
T data_div_res = data_div_max_floor + data_div_min_ceil;
|
||||
return lhs - data_div_res * rhs;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct ModFunc<half> {
|
||||
__device__ __host__ __forceinline__ half operator()(const half &lhs, const half &rhs) {
|
||||
float l = __half2float(lhs);
|
||||
float r = __half2float(rhs);
|
||||
float data_div = l / r;
|
||||
float data_div_min = data_div < 0.0 ? data_div : 0.0;
|
||||
float data_div_max = data_div > 0.0 ? data_div : 0.0;
|
||||
float data_div_max_floor = floorf(data_div_max);
|
||||
float data_div_min_ceil = ceilf(data_div_min);
|
||||
float data_div_res = data_div_max_floor + data_div_min_ceil;
|
||||
return __float2half_rn(l - data_div_res * r);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct ModFunc<half2> {
|
||||
__device__ __host__ __forceinline__ half2 operator()(const half2 &lhs, const half2 &rhs) {
|
||||
float2 l = __half22float2(lhs);
|
||||
float2 r = __half22float2(rhs);
|
||||
float2 data_div;
|
||||
data_div.x = l.x / r.x;
|
||||
data_div.y = l.y / r.y;
|
||||
data_div.x = data_div.x < 0.0 ? ceilf(data_div.x) : floorf(data_div.x);
|
||||
data_div.y = data_div.y < 0.0 ? ceilf(data_div.y) : floorf(data_div.y);
|
||||
data_div.x = l.x - data_div.x * r.x;
|
||||
data_div.y = l.y - data_div.y * r.y;
|
||||
return __float22half2_rn(data_div);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct AbsGradFunc {
|
||||
__device__ __forceinline__ T operator()(const T &lhs, const T &rhs) {
|
||||
|
@ -272,6 +316,8 @@ void ElewiseArithKernel(const int &nums, enum BroadcastOpType op, const T *x0, c
|
|||
return ElewiseArithKernel<T, DivNoNanFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
case BROADCAST_TYPE_SQUARED_DIFFERENCE:
|
||||
return ElewiseArithKernel<T, SquaredDifferenceFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
case BROADCAST_TYPE_MOD:
|
||||
return ElewiseArithKernel<T, ModFunc<T>><<<(nums + 255) / 256, 256, 0, stream>>>(nums, x0, x1, y);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -503,6 +549,11 @@ void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t
|
|||
x0_dims[0], x0_dims[1], x0_dims[2], x0_dims[3], x0_dims[4], x0_dims[5], x0_dims[6], x1_dims[0], x1_dims[1],
|
||||
x1_dims[2], x1_dims[3], x1_dims[4], x1_dims[5], x1_dims[6], y_dims[0], y_dims[1], y_dims[2], y_dims[3],
|
||||
y_dims[4], y_dims[5], y_dims[6], x0, x1, y);
|
||||
case BROADCAST_TYPE_MOD:
|
||||
return BroadcastArithKernel<T, ModFunc<T>><<<(size + 255) / 256, 256, 0, stream>>>(
|
||||
x0_dims[0], x0_dims[1], x0_dims[2], x0_dims[3], x0_dims[4], x0_dims[5], x0_dims[6], x1_dims[0], x1_dims[1],
|
||||
x1_dims[2], x1_dims[3], x1_dims[4], x1_dims[5], x1_dims[6], y_dims[0], y_dims[1], y_dims[2], y_dims[3],
|
||||
y_dims[4], y_dims[5], y_dims[6], x0, x1, y);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -38,6 +38,7 @@ enum BroadcastOpType {
|
|||
BROADCAST_TYPE_DIVNONAN = 12,
|
||||
BROADCAST_TYPE_EQUAL = 13,
|
||||
BROADCAST_TYPE_SQUARED_DIFFERENCE = 14,
|
||||
BROADCAST_TYPE_MOD = 15,
|
||||
BROADCAST_TYPE_INVALID = 0xffffffff,
|
||||
};
|
||||
|
||||
|
|
|
@ -53,6 +53,9 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
MS_REG_GPU_KERNEL_ONE(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
BroadcastOpGpuKernel, double)
|
||||
|
||||
// fp32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
@ -104,6 +107,9 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
DivNoNan,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGpuKernel, float)
|
||||
|
||||
// fp16
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
@ -155,6 +161,9 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
DivNoNan,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
BroadcastOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
BroadcastOpGpuKernel, half)
|
||||
|
||||
// int32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
@ -193,6 +202,9 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
MS_REG_GPU_KERNEL_ONE(
|
||||
DivNoNan, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
BroadcastOpGpuKernel, int)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
BroadcastOpGpuKernel, int)
|
||||
|
||||
// int64
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
@ -231,6 +243,9 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
MS_REG_GPU_KERNEL_ONE(
|
||||
DivNoNan, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
BroadcastOpGpuKernel, int64_t)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
BroadcastOpGpuKernel, int64_t)
|
||||
|
||||
// int8
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
|
|
|
@ -146,7 +146,7 @@ class BroadcastOpGpuKernel : public GpuKernel {
|
|||
{"Maximum", BROADCAST_TYPE_MAXIMUM}, {"Minimum", BROADCAST_TYPE_MINIMUM}, {"Pow", BROADCAST_TYPE_POWER},
|
||||
{"RealDiv", BROADCAST_TYPE_REALDIV}, {"Mul", BROADCAST_TYPE_MUL}, {"Sub", BROADCAST_TYPE_SUB},
|
||||
{"Add", BROADCAST_TYPE_ADD}, {"FloorDiv", BROADCAST_TYPE_FLOORDIV}, {"AbsGrad", BROADCAST_TYPE_ABSGRAD},
|
||||
{"Div", BROADCAST_TYPE_DIV}, {"DivNoNan", BROADCAST_TYPE_DIVNONAN},
|
||||
{"Div", BROADCAST_TYPE_DIV}, {"DivNoNan", BROADCAST_TYPE_DIVNONAN}, {"Mod", BROADCAST_TYPE_MOD},
|
||||
};
|
||||
|
||||
iter = kBroadcastArithmetricTypeMap.find(kernel_name);
|
||||
|
|
|
@ -79,6 +79,11 @@ def test_nobroadcast():
|
|||
output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
|
||||
assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|
||||
|
||||
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.fmod(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -129,6 +134,10 @@ def test_nobroadcast_fp16():
|
|||
output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
|
||||
assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|
||||
|
||||
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.fmod(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
@ -188,6 +197,10 @@ def test_broadcast():
|
|||
output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
|
||||
assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|
||||
|
||||
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.fmod(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
@ -247,6 +260,10 @@ def test_broadcast_diff_dims():
|
|||
output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
|
||||
assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|
||||
|
||||
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.fmod(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
@ -298,6 +315,10 @@ def test_broadcast_fp16():
|
|||
output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
|
||||
assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|
||||
|
||||
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.fmod(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
|
Loading…
Reference in New Issue