From b79523a99489ee6a2e3444966fa5ba6f2e404f45 Mon Sep 17 00:00:00 2001 From: kpy Date: Fri, 19 Jun 2020 19:15:34 +0800 Subject: [PATCH] fix yolov3 multi getitem bug and tensor ptr not unique bug --- mindspore/ccsrc/ir/tensor.cc | 5 +- mindspore/ccsrc/pynative/base.h | 2 +- mindspore/ccsrc/pynative/pynative_execute.cc | 91 +++++++++++++------ mindspore/ccsrc/pynative/pynative_execute.h | 12 ++- .../ut/cpp/pynative/pynative_execute_test.cc | 10 +- 5 files changed, 82 insertions(+), 38 deletions(-) diff --git a/mindspore/ccsrc/ir/tensor.cc b/mindspore/ccsrc/ir/tensor.cc index 4e2e996bacf..3b88dc22c87 100644 --- a/mindspore/ccsrc/ir/tensor.cc +++ b/mindspore/ccsrc/ir/tensor.cc @@ -29,6 +29,7 @@ namespace mindspore { namespace tensor { +static uint64_t count = 0; void DataBuf2Contiguous(const py::array &src, py::array *const dest) { if (dest == nullptr) { MS_LOG(EXCEPTION) << "Failed to copy data to a contiguous buffer as dest is nullptr!"; @@ -208,7 +209,7 @@ void Tensor::init(const py::array &input, const TypeId &data_type) { data_ = input; } dirty_ = true; - id_ = std::to_string((uintptr_t)(this)); + id_ = std::to_string((uintptr_t)(this)) + std::to_string(count++); } void Tensor::init(TypeId data_type, const std::vector &shape, py::array *const data) { @@ -255,7 +256,7 @@ void Tensor::init(TypeId data_type, const std::vector &shape, py::array *co MS_LOG(EXCEPTION) << "Cannot construct Tensor because of unsupported data type: " << data_type << "."; break; } - id_ = std::to_string((uintptr_t)(this)); + id_ = std::to_string((uintptr_t)(this)) + std::to_string(count++); } TypePtr Tensor::SetDtype(const TypePtr type_ptr) { diff --git a/mindspore/ccsrc/pynative/base.h b/mindspore/ccsrc/pynative/base.h index 4e86f0493f4..60ae8692277 100644 --- a/mindspore/ccsrc/pynative/base.h +++ b/mindspore/ccsrc/pynative/base.h @@ -57,7 +57,7 @@ struct OpExecInfo { py::dict op_attrs; }; using OpExecInfoPtr = std::shared_ptr; -OpExecInfoPtr GenerateOpExecInfo(const py::args &args); +OpExecInfoPtr GenerateOpExecInfo(const py::args &args, py::list *const out_args); const std::set ignore_infer_prim = {"make_ref"}; } // namespace pynative diff --git a/mindspore/ccsrc/pynative/pynative_execute.cc b/mindspore/ccsrc/pynative/pynative_execute.cc index 676b256d9a2..ceaf4bd43eb 100644 --- a/mindspore/ccsrc/pynative/pynative_execute.cc +++ b/mindspore/ccsrc/pynative/pynative_execute.cc @@ -53,7 +53,7 @@ const char SINGLE_OP_GRAPH[] = "single_op_graph"; // primitive unable to infer value for constant input in PyNative mode -const std::set vm_operators = {"make_ref", "HookBackward"}; +const std::set vm_operators = {"make_ref", "HookBackward", "stop_gradient"}; namespace mindspore { namespace pynative { @@ -79,15 +79,12 @@ std::string GetId(const py::object &obj) { if (p_list.size() == 0) { return "empty"; } - to_process = p_list[0]; prefix = "tuple:"; - if (!py::isinstance(to_process)) { - std::string key = ""; - for (size_t i = 0; i < p_list.size(); ++i) { - key += std::string(py::str(p_list[i])) + ":"; - } - return prefix + key; + std::string key = ""; + for (size_t i = 0; i < p_list.size(); ++i) { + key += std::string(py::str(GetId(p_list[i]))) + ":"; } + return prefix + key; } if (py::isinstance(to_process)) { return prefix + std::string(py::str(to_process)); @@ -143,7 +140,8 @@ std::map GetDstType(const py::tuple &py_args, return dst_type; } -py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tuple *const out_args) { +py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tuple *const out_args, + py::list *out_args_list) { auto &py_args = *out_args; py::tuple input_mask(args.size()); for (size_t i = 0; i < args.size(); ++i) { @@ -171,8 +169,10 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tu auto tensor_ptr = py::cast(py_args[it->second]); if (py::isinstance(py_args[i])) { py_args[i] = std::make_shared(py::cast(py_args[i]), tensor_ptr->Dtype()); + (*out_args_list)[i] = py_args[i]; } else { py_args[i] = std::make_shared(py::cast(py_args[i]), tensor_ptr->Dtype()); + (*out_args_list)[i] = py_args[i]; } continue; } @@ -195,7 +195,7 @@ void PynativeInfer(const PrimitivePyPtr &prim, const py::list &py_args, OpExecIn op_exec_info->abstract = infer_res; } -OpExecInfoPtr GenerateOpExecInfo(const py::args &args) { +OpExecInfoPtr GenerateOpExecInfo(const py::args &args, py::list *const out_args) { if (args.size() != PY_ARGS_NUM) { MS_LOG(ERROR) << "Three args are needed by RunOp"; return nullptr; @@ -213,7 +213,7 @@ OpExecInfoPtr GenerateOpExecInfo(const py::args &args) { size_t input_num = a.size(); op_exec_info->op_inputs = py::tuple(input_num); - op_exec_info->inputs_mask = ConvertInputs(prim, args[PY_INPUTS], &op_exec_info->op_inputs); + op_exec_info->inputs_mask = ConvertInputs(prim, args[PY_INPUTS], &op_exec_info->op_inputs, out_args); // use python infer method if (ignore_infer_prim.find(op_exec_info->op_name) == ignore_infer_prim.end()) { PynativeInfer(prim, op_exec_info->op_inputs, op_exec_info.get()); @@ -513,16 +513,15 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const auto prim = op_exec_info->py_primitive; inputs.push_back(NewValueNode(prim)); py::tuple op_masks = op_exec_info->inputs_mask; - py::list op_args = args[PY_INPUTS]; AbstractBasePtrList args_spec_list; - for (size_t i = 0; i < op_args.size(); i++) { - auto node = GetInput(op_args[i], op_masks[i]); + for (size_t i = 0; i < args.size(); i++) { + auto node = GetInput(args[i], op_masks[i]); args_spec_list.push_back(node->abstract()); inputs.push_back(node); } auto cnode = curr_g_->NewCNode(inputs); - MS_LOG(DEBUG) << "MakeCnode set node " << cnode->DebugString(); + MS_LOG(DEBUG) << "MakeCnode set node " << cnode->DebugString(4); py::object out_real = out; if (out.size() == 1) { MS_LOG(DEBUG) << "MakeCnode out size is one."; @@ -534,10 +533,12 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const if (value.size() > 1) { for (int i = 0; i < static_cast(value.size()); i++) { auto value_id = GetId(value[i]); + MS_LOG(DEBUG) << "MakeCnode set node id " << value_id; set_obj_node_map(curr_g_, value_id, cnode, i); } } } + MS_LOG(DEBUG) << "MakeCnode set node id " << obj_id; set_obj_node_map(curr_g_, obj_id, cnode); set_pyobj(curr_g_, obj_id); return cnode; @@ -545,12 +546,17 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const AnfNodePtr PynativeExecutor::GetObjNode(const py::object &obj) { auto &out = graph_info_map_[curr_g_].obj_node_map[GetId(obj)]; - if (out.second == -1) { + if (out.second.size() == 1 && out.second[0] == -1) { return out.first; } - std::vector tuple_get_item_inputs{NewValueNode(prim::kPrimTupleGetItem), out.first, - NewValueNode(out.second)}; - return curr_g_->NewCNode(tuple_get_item_inputs); + auto node = out.first; + MS_LOG(DEBUG) << "output size " << out.second.size() << node->DebugString(); + for (auto &idx : out.second) { + std::vector tuple_get_item_inputs{NewValueNode(prim::kPrimTupleGetItem), node, NewValueNode(idx)}; + node = curr_g_->NewCNode(tuple_get_item_inputs); + } + MS_LOG(DEBUG) << "GetObjNode output" << node->DebugString(6); + return node; } py::tuple RunOp(const OpExecInfoPtr &op_exec_info, const py::args &args) { @@ -594,8 +600,11 @@ py::tuple RunOp(const OpExecInfoPtr &op_exec_info, const py::args &args) { py::tuple RunOp(const py::args &args) { MS_LOG(DEBUG) << "RunOp start" << args.size(); - OpExecInfoPtr op_exec_info = GenerateOpExecInfo(args); + py::list args_input = args[PY_INPUTS]; + + OpExecInfoPtr op_exec_info = GenerateOpExecInfo(args, &args_input); MS_EXCEPTION_IF_NULL(op_exec_info); + if (op_exec_info->abstract != nullptr) { py::dict output = abstract::ConvertAbstractToPython(op_exec_info->abstract); if (!output["value"].is_none()) { @@ -609,7 +618,7 @@ py::tuple RunOp(const py::args &args) { return value_ret; } } - return RunOp(op_exec_info, args); + return RunOp(op_exec_info, args_input); } void ClearPyNativeSession() { session = nullptr; } @@ -646,6 +655,14 @@ void PynativeExecutor::NewGraph(const py::object &cell, const py::args &args) { } } +AnfNodePtr PynativeExecutor::MakeValueNode(const py::object &obj, const std::string &obj_id) { + ValuePtr converted_ret = nullptr; + parse::ConvertData(obj, &converted_ret); + auto node = NewValueNode(converted_ret); + set_obj_node_map(curr_g_, obj_id, node); + return node; +} + AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &op_mask) { AnfNodePtr node = nullptr; std::string obj_id = GetId(obj); @@ -683,10 +700,16 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o } else if (py::isinstance(obj)) { // out = op((x, y)) // out = cell((x, y)) + auto tuple = obj.cast(); + + // cell((1,2)): support not mix (scalar, tensor) + if (tuple.size() > 0 && !py::isinstance(tuple[0])) { + return MakeValueNode(obj, obj_id); + } + std::vector args; args.push_back(NewValueNode(prim::kPrimMakeTuple)); - auto tuple = obj.cast(); auto tuple_size = static_cast(tuple.size()); for (int i = 0; i < tuple_size; i++) { args.push_back(GetInput(tuple[i], py::object())); @@ -695,17 +718,26 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o set_obj_node_map(curr_g_, GetId(obj), cnode); node = cnode; } else { - // out = op(x, 1) - ValuePtr converted_ret = nullptr; - parse::ConvertData(obj, &converted_ret); - node = NewValueNode(converted_ret); - set_obj_node_map(curr_g_, obj_id, node); + node = MakeValueNode(obj, obj_id); } - MS_LOG(DEBUG) << "Now getinput " << py::str(obj) << " node " << node->ToString(); + MS_LOG(DEBUG) << "Now getinput node " << node->ToString() << obj_id; return node; } +// for output[0][1] need getitem multi +void PynativeExecutor::SetTupleOutput(const py::object &obj, const AnfNodePtr &cnode, std::vector idx) { + if (py::isinstance(obj)) { + auto tuple = obj.cast(); + for (int i = 0; i < static_cast(tuple.size()); i++) { + std::vector tmp = idx; + tmp.push_back(i); + set_obj_node_map(curr_g_, GetId(tuple[i]), cnode, tmp); + SetTupleOutput(tuple[i], cnode, tmp); + } + } +} + void PynativeExecutor::Pushp() { graph_p_.push(curr_g_); } void PynativeExecutor::Popp() { @@ -737,6 +769,7 @@ void PynativeExecutor::EndGraph(const py::object &cell, const py::object &out, c for (int i = 0; i < tuple_size; i++) { args.push_back(GetInput(tuple[i], py::object())); set_obj_node_map(curr_g_, GetId(tuple[i]), cnode, i); + SetTupleOutput(tuple[i], cnode, std::vector{i}); } cnode->set_inputs(args); set_obj_node_map(curr_g_, out_id, cnode); @@ -784,6 +817,7 @@ void PynativeExecutor::EndGraphByOutId(const std::string &out_id, const py::obje auto out_size = static_cast(out_list.size()); for (int i = 0; i < out_size; i++) { set_obj_node_map(curr_g_, GetId(out_list[i]), out_cnode, i); + SetTupleOutput(out_list[i], out_cnode, std::vector{i}); } } set_obj_node_map(curr_g_, GetId(out), out_cnode); @@ -878,6 +912,7 @@ void PynativeExecutor::GradNet(const GradOperationPtr &grad, const py::object &c MS_EXCEPTION_IF_NULL(resource_->func_graph()); auto g = GradGraph(resource_->func_graph(), grad, w_args, size); resource_->set_func_graph(g); + resource_->manager()->KeepRoots({g}); // get the parameters items and add the value to args_spec abstract::AbstractBasePtrList args_spec = GetArgsSpec(args); diff --git a/mindspore/ccsrc/pynative/pynative_execute.h b/mindspore/ccsrc/pynative/pynative_execute.h index d0247b33d9e..310cf0cb1e2 100644 --- a/mindspore/ccsrc/pynative/pynative_execute.h +++ b/mindspore/ccsrc/pynative/pynative_execute.h @@ -44,13 +44,14 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat py::tuple RunOp(const py::args &args); -py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &py_args, py::tuple *const out_args); +py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &py_args, py::tuple *const out_args, + py::list *out_args_list); void ClearPyNativeSession(); struct GraphInfo { std::unordered_map param_map; - std::unordered_map> obj_node_map; + std::unordered_map>> obj_node_map; AnfNodePtr output; std::vector objects; }; @@ -81,9 +82,12 @@ class PynativeExecutor : public std::enable_shared_from_this { FuncGraphPtr curr_g() { return curr_g_; } void set_pyobj(FuncGraphPtr g, const std::string obj) { graph_info_map_[g].objects.push_back(obj); } void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node) { - graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, -1); + graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, std::vector{-1}); } void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, int index) { + graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, std::vector{index}); + } + void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, std::vector index) { graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, index); } AnfNodePtr MakeCNode(const OpExecInfoPtr &op_exec_info, const py::args &args, const py::tuple &out); @@ -93,6 +97,8 @@ class PynativeExecutor : public std::enable_shared_from_this { void Popp(); FuncGraphPtr GradGraph(FuncGraphPtr g, const GradOperationPtr &grad_op, const std::vector &weights, size_t arg_size); + void SetTupleOutput(const py::object &obj, const AnfNodePtr &cnode, std::vector idx); + AnfNodePtr MakeValueNode(const py::object &obj, const std::string &obj_id); ~PynativeExecutor(); diff --git a/tests/ut/cpp/pynative/pynative_execute_test.cc b/tests/ut/cpp/pynative/pynative_execute_test.cc index 88f82d996b1..a0d1516b58d 100644 --- a/tests/ut/cpp/pynative/pynative_execute_test.cc +++ b/tests/ut/cpp/pynative/pynative_execute_test.cc @@ -35,7 +35,7 @@ class TestPynativeExecute : public UT::Common { TestPynativeExecute() {} }; -inline ValuePtr PyAttrValue(const py::object& obj) { +inline ValuePtr PyAttrValue(const py::object &obj) { ValuePtr converted_ret; bool converted = parse::ConvertData(obj, &converted_ret); if (!converted) { @@ -63,7 +63,9 @@ OpExecInfoPtr ConstructOpExecInfo() { auto conv_obj = prim::GetPythonOps("conv2d_prim", "gtest_input.pynative"); py::none py_none; - return GenerateOpExecInfo(py::make_tuple(conv_obj, op_name, op_inputs)); + py::args args = py::make_tuple(conv_obj, op_name, op_inputs); + py::list args_input = args[PY_INPUTS]; + return GenerateOpExecInfo(args, &args_input); } TEST_F(TestPynativeExecute, TestRunOpInVM) { @@ -77,8 +79,8 @@ TEST_F(TestPynativeExecute, TestRunOpInVM) { TEST_F(TestPynativeExecute, TestRunOp) { py::none py_none; auto op_exec_info_ptr = ConstructOpExecInfo(); - py::tuple outputs = pynative::RunOp(py::make_tuple(op_exec_info_ptr->py_primitive, op_exec_info_ptr->op_name, - op_exec_info_ptr->op_inputs)); + py::tuple outputs = pynative::RunOp( + py::make_tuple(op_exec_info_ptr->py_primitive, op_exec_info_ptr->op_name, op_exec_info_ptr->op_inputs)); if (outputs.size() == 0) { FAIL(); } else {