dataset: Split c_api_vision_test.cc

This commit is contained in:
Cathy Wong 2021-02-23 09:53:26 -05:00
parent 3805f0dfeb
commit 6112738fea
10 changed files with 3467 additions and 3268 deletions

View File

@ -34,7 +34,13 @@ SET(DE_UT_SRCS
c_api_text_sentence_piece_vocab_test.cc
c_api_text_vocab_test.cc
c_api_transforms_test.cc
c_api_vision_test.cc
c_api_vision_a_to_q_test.cc
c_api_vision_bounding_box_augment_test.cc
c_api_vision_random_subselect_policy_test.cc
c_api_vision_random_test.cc
c_api_vision_r_to_z_test.cc
c_api_vision_soft_dvpp_test.cc
c_api_vision_uniform_aug_test.cc
celeba_op_test.cc
center_crop_op_test.cc
channel_swap_test.cc

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,83 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision C++ API BoundingBoxAugment TensorTransform Operation
TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
/* FIXME - Resolve BoundingBoxAugment to properly handle TensorTransform input
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> bound_box_augment = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), 1.0);
EXPECT_NE(bound_box_augment, nullptr);
// Create a Map operation on ds
ds = ds->Map({bound_box_augment}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
*/
}
TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentFail with invalid params.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// Testing invalid ratio < 0.0
std::shared_ptr<TensorTransform> bound_box_augment = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), -1.0);
EXPECT_EQ(bound_box_augment, nullptr);
// Testing invalid ratio > 1.0
std::shared_ptr<TensorTransform> bound_box_augment1 = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), 2.0);
EXPECT_EQ(bound_box_augment1, nullptr);
// Testing invalid transform
std::shared_ptr<TensorTransform> bound_box_augment2 = std::make_shared<vision::BoundingBoxAugment>(nullptr, 0.5);
EXPECT_EQ(bound_box_augment2, nullptr);
*/
}

View File

@ -0,0 +1,255 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision C++ API R to Z TensorTransform Operations (in alphabetical order)
TEST_F(MindDataTestPipeline, TestRescaleSucess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, SequentialSampler(0, 1));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
auto image = row["image"];
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0, 0.0));
EXPECT_NE(rescale, nullptr);
// Convert to the same type
std::shared_ptr<TensorTransform> type_cast(new transforms::TypeCast("uint8"));
EXPECT_NE(type_cast, nullptr);
ds = ds->Map({rescale, type_cast}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter1 = ds->CreateIterator();
EXPECT_NE(iter1, nullptr);
// Iterate the dataset and get each row1
std::unordered_map<std::string, mindspore::MSTensor> row1;
iter1->GetNextRow(&row1);
auto image1 = row1["image"];
// EXPECT_EQ(*image, *image1);
// Manually terminate the pipeline
iter1->Stop();
}
TEST_F(MindDataTestPipeline, TestRescaleSucess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess2 with different params.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 1));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0 / 255, 1.0));
EXPECT_NE(rescale, nullptr);
ds = ds->Map({rescale}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 1);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRescaleFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// incorrect negative rescale parameter
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(-1.0, 0.0));
EXPECT_NE(rescale, nullptr);
}
TEST_F(MindDataTestPipeline, TestResize1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 6));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 4;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create resize object with single integer input
std::shared_ptr<TensorTransform> resize_op(new vision::Resize({30}));
EXPECT_NE(resize_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 24);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestResizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// negative resize value
std::shared_ptr<TensorTransform> resize_op1(new mindspore::dataset::vision::Resize({30, -30}));
EXPECT_NE(resize_op1, nullptr);
// zero resize value
std::shared_ptr<TensorTransform> resize_op2(new mindspore::dataset::vision::Resize({0, 30}));
EXPECT_NE(resize_op2, nullptr);
// resize with 3 values
std::shared_ptr<TensorTransform> resize_op3(new mindspore::dataset::vision::Resize({30, 20, 10}));
EXPECT_NE(resize_op3, nullptr);
}
TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({30}));
EXPECT_NE(resize_with_bbox_op, nullptr);
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({30, 30}));
EXPECT_NE(resize_with_bbox_op1, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Testing negative resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({10, -10}));
EXPECT_NE(resize_with_bbox_op, nullptr);
// Testing negative resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({-10}));
EXPECT_NE(resize_with_bbox_op1, nullptr);
// Testinig zero resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op2(new vision::ResizeWithBBox({0, 10}));
EXPECT_NE(resize_with_bbox_op2, nullptr);
// Testing resize with 3 values
std::shared_ptr<TensorTransform> resize_with_bbox_op3(new vision::ResizeWithBBox({10, 10, 10}));
EXPECT_NE(resize_with_bbox_op3, nullptr);
}
TEST_F(MindDataTestPipeline, TestVisionOperationName) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName.";
std::string correct_name;
// Create object for the tensor op, and check the name
/* FIXME - Update and move test to IR level
std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
correct_name = "RandomVerticalFlip";
EXPECT_EQ(correct_name, random_vertical_flip_op->Name());
// Create object for the tensor op, and check the name
std::shared_ptr<TensorOperation> softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1});
correct_name = "SoftDvppDecodeResizeJpeg";
EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name());
*/
}

View File

@ -0,0 +1,97 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision C++ API RandomSelectSubpolicy TensorTransform Operations
TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicySuccess.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 7));
EXPECT_NE(ds, nullptr);
/* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input
// Create objects for the tensor ops
// Valid case: TensorTransform is not null and probability is between (0,1)
std::shared_ptr<TensorTransform> random_select_subpolicy(new vision::RandomSelectSubpolicy(
{{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_select_subpolicy});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 7);
// Manually terminate the pipeline
iter->Stop();
*/
}
TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicyFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicyFail.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input
// RandomSelectSubpolicy : probability of transform must be between 0.0 and 1.0
std::shared_ptr<TensorTransform> random_select_subpolicy1(new vision::RandomSelectSubpolicy(
{{{vision::Invert(), 1.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy1, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy2(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{nullptr, 1}}}));
EXPECT_NE(random_select_subpolicy2, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy3(new vision::RandomSelectSubpolicy({}));
EXPECT_NE(random_select_subpolicy3, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy4(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {}}));
EXPECT_NE(random_select_subpolicy4, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy5(new vision::RandomSelectSubpolicy({{{}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy5, nullptr);
*/
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,256 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision C++ API SoftDvpp* TensorTransform Operations (in alphabetical order)
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) {
MS_LOG(INFO)
<< "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
vision::SoftDvppDecodeRandomCropResizeJpeg({500}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 500, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) {
MS_LOG(INFO)
<< "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess2 with (height, width) input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 6));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 600, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
auto soft_dvpp_decode_random_crop_resize_jpeg1(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
auto soft_dvpp_decode_random_crop_resize_jpeg2(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values
auto soft_dvpp_decode_random_crop_resize_jpeg3(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0
auto soft_dvpp_decode_random_crop_resize_jpeg4(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max)
auto soft_dvpp_decode_random_crop_resize_jpeg5(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values
auto soft_dvpp_decode_random_crop_resize_jpeg6(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0
auto soft_dvpp_decode_random_crop_resize_jpeg7(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max)
auto soft_dvpp_decode_random_crop_resize_jpeg8(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values
auto soft_dvpp_decode_random_crop_resize_jpeg9(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1
auto soft_dvpp_decode_random_crop_resize_jpeg10(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr);
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 3;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create SoftDvppDecodeResizeJpeg object with single integer input
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({1134}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 12);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess2 with (height, width) input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 2));
EXPECT_NE(ds, nullptr);
// Create SoftDvppDecodeResizeJpeg object with single integer input
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({100, 200}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpeg({}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op1, nullptr);
// SoftDvppDecodeResizeJpeg: size must be a vector of one or two values
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op2(new vision::SoftDvppDecodeResizeJpeg({1, 2, 3}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op2, nullptr);
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op3(new vision::SoftDvppDecodeResizeJpeg({20, -20}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op3, nullptr);
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpeg({0}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op4, nullptr);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,127 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision UniformAugment
// Tests for vision C++ API UniformAugment TensorTransform Operations
TEST_F(MindDataTestPipeline, TestUniformAugmentFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail1 with invalid num_ops parameter.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_crop_op(new vision::RandomCrop({28, 28}));
EXPECT_NE(random_crop_op, nullptr);
std::shared_ptr<TensorTransform> center_crop_op(new vision::CenterCrop({16, 16}));
EXPECT_NE(center_crop_op, nullptr);
// FIXME: For error tests, need to check for failure from CreateIterator execution
// UniformAug: num_ops must be greater than 0
std::shared_ptr<TensorTransform> uniform_aug_op1(new vision::UniformAugment({random_crop_op, center_crop_op}, 0));
EXPECT_EQ(uniform_aug_op1, nullptr);
// UniformAug: num_ops must be greater than 0
std::shared_ptr<TensorTransform> uniform_aug_op2(new vision::UniformAugment({random_crop_op, center_crop_op}, -1));
EXPECT_EQ(uniform_aug_op2, nullptr);
// UniformAug: num_ops is greater than transforms size
std::shared_ptr<TensorTransform> uniform_aug_op3(new vision::UniformAugment({random_crop_op, center_crop_op}, 3));
EXPECT_EQ(uniform_aug_op3, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestUniformAugmentFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail2 with invalid transform.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// UniformAug: transform ops must not be null
std::shared_ptr<TensorTransform> uniform_aug_op1(new vision::UniformAugment({vision::RandomCrop({-28})}, 1));
EXPECT_NE(uniform_aug_op1, nullptr);
// UniformAug: transform ops must not be null
std::shared_ptr<TensorTransform> uniform_aug_op2(new vision::UniformAugment({vision::RandomCrop({28}), nullptr}, 2));
EXPECT_NE(uniform_aug_op2, nullptr);
// UniformAug: transform list must not be empty
std::shared_ptr<TensorTransform> uniform_aug_op3(new vision::UniformAugment({}, 1));
EXPECT_NE(uniform_aug_op3, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestUniformAugWithOps) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugWithOps.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, "all", RandomSampler(false, 20));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 1;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> resize_op(new vision::Resize({30, 30}));
EXPECT_NE(resize_op, nullptr);
std::shared_ptr<TensorTransform> random_crop_op(new vision::RandomCrop({28, 28}));
EXPECT_NE(random_crop_op, nullptr);
std::shared_ptr<TensorTransform> center_crop_op(new vision::CenterCrop({16, 16}));
EXPECT_NE(center_crop_op, nullptr);
std::shared_ptr<TensorTransform> uniform_aug_op(new vision::UniformAugment({random_crop_op, center_crop_op}, 2));
EXPECT_NE(uniform_aug_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op, uniform_aug_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}

View File

@ -181,3 +181,34 @@ TEST_F(MindDataTestExecute, TestTransformInputSequential) {
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}
TEST_F(MindDataTestExecute, TestTransformDecodeResizeCenterCrop1) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformDecodeResizeCenterCrop1.";
// Test Execute with Decode, Resize and CenterCrop transform ops input using API constructors, with auto pointers
// Read image
std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
// Define transform operations
std::vector<int32_t> resize_paras = {256, 256};
std::vector<int32_t> crop_paras = {224, 224};
auto decode(new vision::Decode());
auto resize(new vision::Resize(resize_paras));
auto centercrop(new vision::CenterCrop(crop_paras));
auto hwc2chw(new vision::HWC2CHW());
std::vector<TensorTransform *> op_list = {decode, resize, centercrop, hwc2chw};
mindspore::dataset::Execute Transform(op_list, "CPU");
// Apply transform on image
Status rc = Transform(image, &image);
// Check image info
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(image.Shape().size(), 3);
ASSERT_EQ(image.Shape()[0], 3);
ASSERT_EQ(image.Shape()[1], 224);
ASSERT_EQ(image.Shape()[2], 224);
}