!35425 [assistant][SparseTensorDenseAdd] Add new sparse operator SparseTensorDenseAdd

Merge pull request !35425 from 靳铎/SparseTensorDenseAdd
This commit is contained in:
i-robot 2022-07-15 07:48:33 +00:00 committed by Gitee
commit 600a7b14dc
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
11 changed files with 669 additions and 1 deletions

View File

@ -0,0 +1,300 @@
/**
* Copyright 2021-2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/sparse_tensor_dense_add_cpu_kernel.h"
#include <algorithm>
#include <utility>
#include <complex>
#include <functional>
#include <type_traits>
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kIndicesShapeSize = 2;
constexpr size_t kSparseTensorDenseAddInputsNum = 4;
constexpr size_t kSparseTensorDenseAddOutputsNum = 1;
using complex64 = std::complex<float>;
using complex128 = std::complex<double>;
} // namespace
void SparseTensorDenseAddCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
auto indices_shape = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, INDICES);
if (indices_shape.size() != kIndicesShapeSize) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', it requires 'x1_indices' must be a " << kIndicesShapeSize
<< "-D Tensor, but got " << indices_shape.size() << "-D";
}
auto values_shape = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, VALUES);
if (values_shape.size() != 1 || values_shape[0] != indices_shape[0]) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_
<< "', it requires 'x1_values' must be a 1-D Tensor and the first dimension length "
<< "must be equal to the first dimension length of 'indices', but got 'x1_values' shape: "
<< Vector2Str(values_shape) << " and 'x1_indices' shape: " << Vector2Str(indices_shape);
}
auto shape_shape_ = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, SPARSE_SHAPE);
x2_shape_ = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, DENSE);
size_t x1_rank = shape_shape_[0];
size_t x2_rank = x2_shape_.size();
if (x1_rank != x2_rank) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_
<< "', x1 and x2 must have same ranks, but got 'x1' shape: " << Vector2Str(shape_shape_)
<< "and 'x2' shape: " << Vector2Str(x2_shape_);
}
values_size_ = values_shape[0];
output_shape_ = common::AnfAlgo::GetOutputInferShape(kernel_node, 0);
auto kernel_attr = GetKernelAttrFromNode(kernel_node);
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
if (!is_match) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_
<< "SparseTensorDenseAdd does not support this kernel data type: " << kernel_attr;
}
kernel_func_ = func_list_[index].second;
}
template <typename I, typename T>
bool SparseTensorDenseAddCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kSparseTensorDenseAddInputsNum, kernel_name_);
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kSparseTensorDenseAddOutputsNum, kernel_name_);
if (outputs[0]->size == 0) {
MS_LOG(WARNING) << "For '" << kernel_name_ << "', output memory size must be greater than 0, but got 0.";
return true;
}
auto ret = memset_s(outputs[0]->addr, outputs[0]->size, 0, outputs[0]->size);
if (ret != EOK) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', memset output failed. Error no: " << ret;
}
const auto *indices_addr = reinterpret_cast<I *>(inputs[0]->addr);
const auto *values_addr = reinterpret_cast<T *>(inputs[1]->addr);
const auto *shape_addr = reinterpret_cast<I *>(inputs[2]->addr);
const auto *x2_addr = reinterpret_cast<T *>(inputs[3]->addr);
auto *output_addr = reinterpret_cast<T *>(outputs[0]->addr);
const size_t indices_length = inputs[0]->size / sizeof(I);
const size_t values_length = inputs[1]->size / sizeof(T);
const size_t x2_length = inputs[3]->size / sizeof(T);
const size_t out_length = outputs[0]->size / sizeof(T);
size_t rank = output_shape_.size();
for (size_t i = 0; i < x2_length; i++) {
if (i > out_length) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the index of 'x2' out of bounds.";
}
output_addr[i] = x2_addr[i];
}
for (size_t i = 0; i < rank; i++) {
size_t x1_shape_i = shape_addr[i];
size_t x2_shape_i = x2_shape_[i];
if (x1_shape_i != x2_shape_i) {
MS_EXCEPTION(RuntimeError) << "For '" << kernel_name_ << "', Dimension [" << i << "] does not equal"
<< "(no broadcasting is supported): x1_shape side " << x1_shape_i
<< " vs x2_shape side " << x2_shape_i << ".";
}
}
for (size_t i = 0; i < values_size_; ++i) {
if (i >= values_length) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the index of 'x1_values' out of bounds.";
}
size_t out_index = 0;
for (size_t j = 0; j < rank; j++) {
if (i * rank + j >= indices_length) {
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the index of 'x1_indices' out of bounds.";
}
int index = indices_addr[i * rank + j];
if (index >= SizeToInt(output_shape_[j]) || index < 0) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', the " << i << "th x1_value in " << j
<< "th dimension index: " << index << " of 'output' out of bounds: [0, "
<< output_shape_[j] << ")";
}
size_t count = 1;
for (size_t k = j + 1; k < rank; k++) {
count *= output_shape_[k];
}
out_index += IntToSize(index) * count;
}
output_addr[out_index] += values_addr[i];
}
return true;
}
std::vector<std::pair<KernelAttr, SparseTensorDenseAddCpuKernelMod::SparseTensorDenseAddFunc>>
SparseTensorDenseAddCpuKernelMod::func_list_ = {
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, int8_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, int16_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, int32_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, int64_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, uint8_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt16)
.AddOutputAttr(kNumberTypeUInt16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, uint16_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, float16>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, float>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, double>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeComplex64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeComplex64)
.AddOutputAttr(kNumberTypeComplex64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, complex64>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeComplex128)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeComplex128)
.AddOutputAttr(kNumberTypeComplex128),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int32_t, complex128>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddOutputAttr(kNumberTypeInt8),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, int8_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddOutputAttr(kNumberTypeInt16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, int16_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, int32_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, int64_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddOutputAttr(kNumberTypeUInt8),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, uint8_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt16)
.AddOutputAttr(kNumberTypeUInt16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, uint16_t>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, float16>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, float>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddOutputAttr(kNumberTypeFloat64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, double>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeComplex64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeComplex64)
.AddOutputAttr(kNumberTypeComplex64),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, complex64>},
{KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeComplex128)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeComplex128)
.AddOutputAttr(kNumberTypeComplex128),
&SparseTensorDenseAddCpuKernelMod::LaunchKernel<int64_t, complex128>}};
std::vector<KernelAttr> SparseTensorDenseAddCpuKernelMod::GetOpSupport() {
std::vector<KernelAttr> support_list;
(void)std::transform(func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
[](const std::pair<KernelAttr, SparseTensorDenseAddFunc> &pair) { return pair.first; });
return support_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseTensorDenseAdd, SparseTensorDenseAddCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,63 @@
/**
* Copyright 2021-2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_ADD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_ADD_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include <utility>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class SparseTensorDenseAddCpuKernelMod : public DeprecatedNativeCpuKernelMod {
public:
SparseTensorDenseAddCpuKernelMod() = default;
~SparseTensorDenseAddCpuKernelMod() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override {
return kernel_func_(this, inputs, outputs);
}
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
template <typename I, typename T>
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
template <typename I, typename T>
bool LaunchKernelComplex(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs);
using SparseTensorDenseAddFunc =
std::function<bool(SparseTensorDenseAddCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &)>;
static std::vector<std::pair<KernelAttr, SparseTensorDenseAddFunc>> func_list_;
SparseTensorDenseAddFunc kernel_func_;
ShapeVector x2_shape_;
ShapeVector output_shape_;
size_t values_size_{0};
enum input_list_ { INDICES, VALUES, SPARSE_SHAPE, DENSE };
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_ADD_CPU_KERNEL_H_

View File

@ -282,6 +282,7 @@ constexpr auto kSparseMatrixNNZ = "SparseMatrixNNZ";
// Sparse Grad ops
constexpr auto kSparseAddGrad = "SparseAddGrad";
constexpr auto kSparseTensorDenseAdd = "SparseTensorDenseAdd";
// Meta Function Graph
constexpr auto kJ = "J";
@ -886,6 +887,7 @@ GVAR_DEF(PrimitivePtr, kPrimSparseMatrixNNZ, std::make_shared<Primitive>(kSparse
// Sparse Grad ops
GVAR_DEF(PrimitivePtr, kPrimSparseAddGrad, std::make_shared<Primitive>(kSparseAddGrad));
GVAR_DEF(PrimitivePtr, kPrimSparseTensorDenseAdd, std::make_shared<Primitive>(kSparseTensorDenseAdd));
// TensorList
GVAR_DEF(PrimitivePtr, kPrimTensorListFromTensor, std::make_shared<Primitive>("TensorListFromTensor"));

View File

@ -0,0 +1,102 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <vector>
#include <memory>
#include "ops/sparse_tensor_dense_add.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "abstract/ops/primitive_infer_map.h"
#include "ops/primitive_c.h"
#include "mindapi/src/helper.h"
namespace mindspore {
namespace ops {
abstract::ShapePtr SparseTensorDenseAddInferShape(const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
auto prim_name = prim->name();
auto x1_indices_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
auto x1_values_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->BuildShape())[kShape];
auto x1_shape_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[2]->BuildShape())[kShape];
auto x2_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[3]->BuildShape())[kShape];
int64_t x2_shape_size = x2_shape.size();
const int kDimensionOne = 1;
const int kDimensionTwo = 2;
const int kDimensionFive = 5;
if (x1_indices_shape.size() != kDimensionTwo) {
MS_EXCEPTION(ValueError) << "For " << prim_name
<< ", the 'x1_indices' should have rank 2, but got: " << x1_indices_shape.size();
}
if (x1_shape_shape.size() != kDimensionOne) {
MS_EXCEPTION(ValueError) << "For " << prim_name
<< ", the 'x1_shape' should have rank 1, but got: : " << x1_shape_shape.size();
}
if (x1_values_shape.size() != kDimensionOne || x1_values_shape[0] != x1_indices_shape[0]) {
MS_EXCEPTION(ValueError) << "For '" << prim_name
<< "', the 'x1_values' must be a 1-D tensor and the first dimension length"
<< " must be equal to the first dimension length of 'x1_indices', but got "
<< x1_values_shape[0] << " vs " << x1_indices_shape[0] << ".";
}
if (x1_shape_shape[0] != x1_indices_shape[1]) {
MS_EXCEPTION(ValueError) << "For '" << prim_name
<< "', the length of 'x1_shape' should be equal to the second dimension"
<< " length of 'x1_indices', but got " << x1_shape_shape[0] << " vs "
<< x1_indices_shape[1] << ".";
}
if (x1_shape_shape[0] != x2_shape_size) {
MS_EXCEPTION(ValueError) << "For '" << prim_name
<< "', the rank of 'x1_shape' should be equal to the rank of 'x2_shape', but got "
<< x1_shape_shape[0] << " vs " << x2_shape_size << ".";
}
if (x2_shape.size() > kDimensionFive || x2_shape.size() < kDimensionOne) {
MS_EXCEPTION(ValueError) << "For '" << prim_name
<< "', Only tensors with ranks between 1 and 5 are currently supported. "
<< "Tensor rank: " << x2_shape.size() << ".";
}
ShapeVector output_shape = x2_shape;
return std::make_shared<abstract::Shape>(output_shape);
}
TypePtr SparseTensorDenseAddInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
auto indices_type = input_args[kInputIndex0]->BuildType();
auto values_type = input_args[kInputIndex1]->BuildType();
auto shape_type = input_args[kInputIndex2]->BuildType();
auto x2_type = input_args[kInputIndex3]->BuildType();
const std::set<TypePtr> valid_indices_types = {kInt32, kInt64};
const std::set<TypePtr> valid_values_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32,
kUInt64, kFloat16, kFloat32, kFloat64, kComplex64, kComplex128};
(void)CheckAndConvertUtils::CheckTensorTypeSame({{"indices", indices_type}, {"shape", shape_type}},
valid_indices_types, prim->name());
(void)CheckAndConvertUtils::CheckTensorTypeSame({{"values", values_type}, {"x2", x2_type}}, valid_values_types,
prim->name());
return x2_type;
}
AbstractBasePtr SparseTensorDenseAddInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
constexpr int inputs_num = 4;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, inputs_num, prim->name());
auto infer_type = SparseTensorDenseAddInferType(prim, input_args);
auto infer_shape = SparseTensorDenseAddInferShape(prim, input_args);
return abstract::MakeAbstract(infer_shape, infer_type);
}
MIND_API_OPERATOR_IMPL(SparseTensorDenseAdd, BaseOperator);
REGISTER_PRIMITIVE_EVAL_IMPL(SparseTensorDenseAdd, prim::kPrimSparseTensorDenseAdd, SparseTensorDenseAddInfer, nullptr,
true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,46 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_SPARSE_TENSOR_DENSE_ADD_H_
#define MINDSPORE_CORE_OPS_SPARSE_TENSOR_DENSE_ADD_H_
#include <vector>
#include <memory>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
#include "ops/primitive_c.h"
#include "abstract/abstract_value.h"
namespace mindspore {
namespace ops {
constexpr auto kNameSparseTensorDenseAdd = "SparseTensorDenseAdd";
/// \brief Add a sparse tensor with a dense tensor.
/// Refer to Python API @ref mindspore.ops.SparseTensorDenseAdd for more details.
class MIND_API SparseTensorDenseAdd : public BaseOperator {
public:
MIND_API_BASE_MEMBER(SparseTensorDenseAdd);
/// \brief Constructor.
SparseTensorDenseAdd() : BaseOperator(kNameSparseTensorDenseAdd) {
InitIOName({"x1_indices", "x1_values", "x1_shape", "x2"}, {"output"});
}
/// \brief Init.
void Init() const {}
};
AbstractBasePtr SparseTensorDenseAddInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args);
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_SPARSE_TENSOR_DENSE_ADD_H_

View File

@ -21,5 +21,6 @@ from . import grad_nn_ops
from . import grad_math_ops
from . import grad_linalg_ops
from . import grad_image_ops
from . import grad_sparse
__all__ = ['get_bprop_fn']

View File

@ -0,0 +1,14 @@
"""Define the grad rules of math related operations."""
from .. import functional as F
from .._grad.grad_base import bprop_getters
from ..composite.multitype_ops.zeros_like_impl import zeros_like
from ..operations.sparse_ops import SparseTensorDenseAdd
@bprop_getters.register(SparseTensorDenseAdd)
def get_bprop_sparse_tensor_dense_add(self):
"""Grad definition for `SparseTensorDenseAdd` operation."""
def bprop(x1_indices, x1_values, x1_shape, x2, out, dout):
return (zeros_like(x1_indices), F.gather_nd(dout, x1_indices), zeros_like(x1_shape), dout,)
return bprop

View File

@ -103,6 +103,7 @@ from .reverse_sequence import _reverse_sequence_aicpu
from .matrix_inverse import _matrix_inverse_aicpu
from .matrix_determinant import _matrix_determinant_aicpu
from .log_matrix_determinant import _log_matrix_determinant_aicpu
from .sparse_tensor_dense_add import _sparse_tensor_dense_add_aicpu
from .lstsq import _lstsq_aicpu
from .crop_and_resize import _crop_and_resize_aicpu
from .crop_and_resize_grad_boxes import _crop_and_resize_grad_boxes_aicpu

View File

@ -0,0 +1,84 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseTensorDenseAdd op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
sparse_tensor_dense_add_op_info = AiCPURegOp("SparseTensorDenseAdd") \
.fusion_type("OPAQUE") \
.input(0, "x1_indices", "required") \
.input(1, "x1_values", "required") \
.input(2, "x1_shape", "required") \
.input(3, "x2", "required") \
.output(0, "y", "required") \
.dtype_format(DataType.I32_Default, DataType.F16_Default, DataType.I32_Default,
DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.I32_Default,
DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_Default, DataType.F64_Default, DataType.I32_Default,
DataType.F64_Default, DataType.F64_Default) \
.dtype_format(DataType.I32_Default, DataType.I8_Default, DataType.I32_Default,
DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.I32_Default, DataType.I16_Default, DataType.I32_Default,
DataType.I16_Default, DataType.I16_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default,
DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.I32_Default, DataType.U8_Default, DataType.I32_Default,
DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.I32_Default, DataType.U16_Default, DataType.I32_Default,
DataType.U16_Default, DataType.U16_Default) \
.dtype_format(DataType.I32_Default, DataType.U32_Default, DataType.I32_Default,
DataType.U32_Default, DataType.U32_Default) \
.dtype_format(DataType.I32_Default, DataType.C64_Default, DataType.I32_Default,
DataType.C64_Default, DataType.C64_Default) \
.dtype_format(DataType.I32_Default, DataType.C128_Default, DataType.I32_Default,
DataType.C128_Default, DataType.C128_Default) \
.dtype_format(DataType.I32_Default, DataType.U64_Default, DataType.I32_Default,
DataType.U64_Default, DataType.U64_Default) \
.dtype_format(DataType.I64_Default, DataType.F16_Default, DataType.I64_Default,
DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.I64_Default, DataType.F32_Default, DataType.I64_Default,
DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I64_Default, DataType.F64_Default, DataType.I64_Default,
DataType.F64_Default, DataType.F64_Default) \
.dtype_format(DataType.I64_Default, DataType.I8_Default, DataType.I64_Default,
DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.I64_Default, DataType.I16_Default, DataType.I64_Default,
DataType.I16_Default, DataType.I16_Default) \
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default,
DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.I64_Default, DataType.U8_Default, DataType.I64_Default,
DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.I64_Default, DataType.U16_Default, DataType.I64_Default,
DataType.U16_Default, DataType.U16_Default) \
.dtype_format(DataType.I64_Default, DataType.U32_Default, DataType.I64_Default,
DataType.U32_Default, DataType.U32_Default) \
.dtype_format(DataType.I64_Default, DataType.U64_Default, DataType.I64_Default,
DataType.U64_Default, DataType.U64_Default) \
.dtype_format(DataType.I64_Default, DataType.C64_Default, DataType.I64_Default,
DataType.C64_Default, DataType.C64_Default) \
.dtype_format(DataType.I64_Default, DataType.C128_Default, DataType.I64_Default,
DataType.C128_Default, DataType.C128_Default) \
.get_op_info()
@op_info_register(sparse_tensor_dense_add_op_info)
def _sparse_tensor_dense_add_aicpu():
"""SparseTensorDenseAdd AiCPU register"""
return

View File

@ -89,6 +89,53 @@ class SparseToDense(PrimitiveWithInfer):
return out
class SparseTensorDenseAdd(Primitive):
"""
Add a sparse tensor and a dense tensor to get a dense tensor.
Inputs:
- **x1_indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor.
Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`.
- **x1_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
The shape should be :math:`(n,)`.
- **x1_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor,
should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
-**x2** (Tensor)- A dense Tensor, the dtype is same as `values`.
Returns:
Tensor, add result of sparse tensor and dense tensor. The dtype is same as `values`,
and the shape is `x1_shape`.
Raises:
TypeError: If the dtype of `x1_indices` and 'x1_shape' is neither int32 nor int64.
ValueError: If `x1_shape`, shape of `x1_indices`, shape of `x1_values` and shape
of 'x2' don't meet the parameter description.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as ops
>>> from mindspore.common import dtype as mstype
>>> x1_indices = Tensor([[0, 0], [0, 1]], dtype=mstype.int64)
>>> x1_values = Tensor([1, 1], dtype=mstype.float32)
>>> x1_shape = Tensor([3, 3], dtype=mstype.int64)
>>> x2= Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=mstype.float32)
>>> sparse_tensor_dense_add = ops.SparseTensorDenseAdd()
>>> out = sparse_tensor_dense_add(x1_indices, x1_values, x1_shape, x2)
>>> print(out)
[[2. 2. 1.]
[1. 1. 1.]
[1. 1. 1.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize SparseTensorDenseAdd."""
self.init_prim_io_names(inputs=['x1_indices', 'x1_values', 'x1_shape', 'x2'], outputs=['y'])
class SparseTensorDenseMatmul(Primitive):
"""
Multiplies sparse matrix `A` by dense matrix `B`.

View File

@ -104,6 +104,7 @@ from mindspore.ops.operations.nn_ops import ReLUV3
from mindspore.ops.operations.sparse_ops import DenseToCSRSparseMatrix, Sspaddmm
from mindspore.ops.operations.sparse_ops import SparseTensorDenseMatmul
from mindspore.ops.operations.sparse_ops import SparseMatrixNNZ
from mindspore.ops.operations.sparse_ops import SparseTensorDenseAdd
from mindspore.ops.operations.other_ops import BlackmanWindow
from mindspore.ops.operations.nn_ops import SparseApplyCenteredRMSProp
from mindspore.nn.layer import normalization
@ -3993,7 +3994,14 @@ test_case_sparse_ops = [
'desc_inputs': [Tensor(np.array([[0, 0], [1, 1]]), mstype.int64),
Tensor(np.array([1, 1]), mstype.int64),
Tensor(np.array([[1, 2], [3, 4]]), mstype.int64)],
'skip': ['backward']})
'skip': ['backward']}),
('SparseTensorDenseAdd', {
'block': SparseTensorDenseAdd(),
'desc_inputs': [Tensor([[0]], mstype.int32),
Tensor([1], mstype.float32),
Tensor([1], mstype.int32),
Tensor([1], mstype.float32)],
'desc_bprop': [Tensor([1], mstype.float32)]}),
]
test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops,