!15464 fix bugs in np.convolve and np.diff

From: @yanglf1121
Reviewed-by: @liangchenghui,@kingxian
Signed-off-by: @liangchenghui,@kingxian
This commit is contained in:
mindspore-ci-bot 2021-04-22 09:45:51 +08:00 committed by Gitee
commit 5fe72ea838
3 changed files with 23 additions and 17 deletions

View File

@ -1879,6 +1879,10 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
The first difference is given by :math:`out[i] = a[i+1] - a[i]` along the given axis, The first difference is given by :math:`out[i] = a[i+1] - a[i]` along the given axis,
higher differences are calculated by using `diff` iteratively. higher differences are calculated by using `diff` iteratively.
Note:
Since zero-shaped Tensor is not supported in MindSpore, a value error is raised if
an empty Tensor is encountered.
Args: Args:
a (Tensor): Input tensor. a (Tensor): Input tensor.
n (int, optional): The number of times values are differenced. If zero, n (int, optional): The number of times values are differenced. If zero,
@ -1924,11 +1928,11 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
if prepend is not None: if prepend is not None:
if isinstance(prepend, (int, float, bool)): if isinstance(prepend, (int, float, bool)):
prepend = asarray_const(prepend) prepend = asarray_const(prepend)
prepend_shape = a.shape
prepend_shape = _tuple_setitem(prepend_shape, axis, 1)
prepend = _broadcast_to_shape(prepend, prepend_shape)
elif not isinstance(prepend, Tensor): elif not isinstance(prepend, Tensor):
_raise_type_error("prepend must be scalar or Tensor, but got ", prepend) _raise_type_error("prepend must be scalar or Tensor, but got ", prepend)
prepend_shape = a.shape
prepend_shape = _tuple_setitem(prepend_shape, axis, 1)
prepend = _broadcast_to_shape(prepend, prepend_shape)
combined += (prepend,) combined += (prepend,)
combined += (a,) combined += (a,)
@ -1936,22 +1940,19 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
if append is not None: if append is not None:
if isinstance(append, (int, float, bool)): if isinstance(append, (int, float, bool)):
append = asarray_const(append) append = asarray_const(append)
append_shape = a.shape
append_shape = _tuple_setitem(append_shape, axis, 1)
append = _broadcast_to_shape(append, append_shape)
elif not isinstance(append, Tensor): elif not isinstance(append, Tensor):
_raise_type_error("append must be scalar or Tensor, but got ", append) _raise_type_error("append must be scalar or Tensor, but got ", append)
append_shape = a.shape
append_shape = _tuple_setitem(append_shape, axis, 1)
append = _broadcast_to_shape(append, append_shape)
combined += (append,) combined += (append,)
if combined: if combined:
a = concatenate(combined, axis) a = concatenate(combined, axis)
# if n > maximum length allowed, returns empty tensor, with shape matched with # if n > maximum length allowed, the tensor is empty, and is not supported
# the original tensor if n >= a.shape[axis]:
if n > a.shape[axis]: _raise_value_error("n is bigger then the specified dimension, this will result in an empty tensor.")
empty_shape = a.shape
empty_shape = _tuple_setitem(empty_shape, axis, 0)
return empty(empty_shape, a.dtype)
original_dtype = a.dtype original_dtype = a.dtype
# will change once F.tensor_slice supports types other than float32 # will change once F.tensor_slice supports types other than float32
@ -2233,7 +2234,13 @@ def convolve(a, v, mode='full'):
_raise_value_error("a and v must be 1-D tensor.") _raise_value_error("a and v must be 1-D tensor.")
if a_size < v_size: if a_size < v_size:
a, v = v, a a, v = v, a
a_size, v_size = v_size, a_size
v = v[::-1] v = v[::-1]
return _compute_1D_conv(a, v, mode).astype(final_dtype)
def _compute_1D_conv(a, v, mode):
"""Returns a 1-D sequence which is the cross-correlate of two 1-D sequences (`a` and `v`)."""
v_size = F.shape_mul(v.shape)
if mode not in ('same', 'full', 'valid'): if mode not in ('same', 'full', 'valid'):
_raise_value_error("mode must be one of ['full', 'same', 'valid']") _raise_value_error("mode must be one of ['full', 'same', 'valid']")
if v_size > 1: if v_size > 1:
@ -2247,8 +2254,7 @@ def convolve(a, v, mode='full'):
a = a.reshape(1, 1, 1, a.size) a = a.reshape(1, 1, 1, a.size)
v = v.reshape(1, 1, 1, v.size) v = v.reshape(1, 1, 1, v.size)
_conv = P.Conv2D(1, (1, v.size)) _conv = P.Conv2D(1, (1, v.size))
return _conv(a, v).reshape(-1).astype(final_dtype) return _conv(a, v).reshape(-1)
def _handle_weights(weights, num_samples): def _handle_weights(weights, num_samples):
"""Checks fweight and aweight in np.cov.""" """Checks fweight and aweight in np.cov."""

View File

@ -1717,7 +1717,7 @@ def onp_convolve(mode):
return a, b, c, d, e return a, b, c, d, e
@pytest.mark.level1 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_convolve(): def test_convolve():

View File

@ -103,7 +103,7 @@ def test_matmul_composite():
for y in scalars: for y in scalars:
output = net(Tensor(x), Tensor(y)) output = net(Tensor(x), Tensor(y))
expect = np.matmul(x, y) expect = np.matmul(x, y)
np.testing.assert_array_almost_equal(output.asnumpy(), expect) np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4)
broadcastables = [ broadcastables = [
np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32),
@ -120,4 +120,4 @@ def test_matmul_composite():
y = broadcastables[2*i + 1] y = broadcastables[2*i + 1]
output = net(Tensor(x), Tensor(y)) output = net(Tensor(x), Tensor(y))
expect = np.matmul(x, y) expect = np.matmul(x, y)
np.testing.assert_array_almost_equal(output.asnumpy(), expect) np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4)