forked from mindspore-Ecosystem/mindspore
!15464 fix bugs in np.convolve and np.diff
From: @yanglf1121 Reviewed-by: @liangchenghui,@kingxian Signed-off-by: @liangchenghui,@kingxian
This commit is contained in:
commit
5fe72ea838
|
@ -1879,6 +1879,10 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
|
||||||
The first difference is given by :math:`out[i] = a[i+1] - a[i]` along the given axis,
|
The first difference is given by :math:`out[i] = a[i+1] - a[i]` along the given axis,
|
||||||
higher differences are calculated by using `diff` iteratively.
|
higher differences are calculated by using `diff` iteratively.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Since zero-shaped Tensor is not supported in MindSpore, a value error is raised if
|
||||||
|
an empty Tensor is encountered.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
a (Tensor): Input tensor.
|
a (Tensor): Input tensor.
|
||||||
n (int, optional): The number of times values are differenced. If zero,
|
n (int, optional): The number of times values are differenced. If zero,
|
||||||
|
@ -1924,11 +1928,11 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
|
||||||
if prepend is not None:
|
if prepend is not None:
|
||||||
if isinstance(prepend, (int, float, bool)):
|
if isinstance(prepend, (int, float, bool)):
|
||||||
prepend = asarray_const(prepend)
|
prepend = asarray_const(prepend)
|
||||||
prepend_shape = a.shape
|
|
||||||
prepend_shape = _tuple_setitem(prepend_shape, axis, 1)
|
|
||||||
prepend = _broadcast_to_shape(prepend, prepend_shape)
|
|
||||||
elif not isinstance(prepend, Tensor):
|
elif not isinstance(prepend, Tensor):
|
||||||
_raise_type_error("prepend must be scalar or Tensor, but got ", prepend)
|
_raise_type_error("prepend must be scalar or Tensor, but got ", prepend)
|
||||||
|
prepend_shape = a.shape
|
||||||
|
prepend_shape = _tuple_setitem(prepend_shape, axis, 1)
|
||||||
|
prepend = _broadcast_to_shape(prepend, prepend_shape)
|
||||||
combined += (prepend,)
|
combined += (prepend,)
|
||||||
|
|
||||||
combined += (a,)
|
combined += (a,)
|
||||||
|
@ -1936,22 +1940,19 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
|
||||||
if append is not None:
|
if append is not None:
|
||||||
if isinstance(append, (int, float, bool)):
|
if isinstance(append, (int, float, bool)):
|
||||||
append = asarray_const(append)
|
append = asarray_const(append)
|
||||||
append_shape = a.shape
|
|
||||||
append_shape = _tuple_setitem(append_shape, axis, 1)
|
|
||||||
append = _broadcast_to_shape(append, append_shape)
|
|
||||||
elif not isinstance(append, Tensor):
|
elif not isinstance(append, Tensor):
|
||||||
_raise_type_error("append must be scalar or Tensor, but got ", append)
|
_raise_type_error("append must be scalar or Tensor, but got ", append)
|
||||||
|
append_shape = a.shape
|
||||||
|
append_shape = _tuple_setitem(append_shape, axis, 1)
|
||||||
|
append = _broadcast_to_shape(append, append_shape)
|
||||||
combined += (append,)
|
combined += (append,)
|
||||||
|
|
||||||
if combined:
|
if combined:
|
||||||
a = concatenate(combined, axis)
|
a = concatenate(combined, axis)
|
||||||
|
|
||||||
# if n > maximum length allowed, returns empty tensor, with shape matched with
|
# if n > maximum length allowed, the tensor is empty, and is not supported
|
||||||
# the original tensor
|
if n >= a.shape[axis]:
|
||||||
if n > a.shape[axis]:
|
_raise_value_error("n is bigger then the specified dimension, this will result in an empty tensor.")
|
||||||
empty_shape = a.shape
|
|
||||||
empty_shape = _tuple_setitem(empty_shape, axis, 0)
|
|
||||||
return empty(empty_shape, a.dtype)
|
|
||||||
|
|
||||||
original_dtype = a.dtype
|
original_dtype = a.dtype
|
||||||
# will change once F.tensor_slice supports types other than float32
|
# will change once F.tensor_slice supports types other than float32
|
||||||
|
@ -2233,7 +2234,13 @@ def convolve(a, v, mode='full'):
|
||||||
_raise_value_error("a and v must be 1-D tensor.")
|
_raise_value_error("a and v must be 1-D tensor.")
|
||||||
if a_size < v_size:
|
if a_size < v_size:
|
||||||
a, v = v, a
|
a, v = v, a
|
||||||
|
a_size, v_size = v_size, a_size
|
||||||
v = v[::-1]
|
v = v[::-1]
|
||||||
|
return _compute_1D_conv(a, v, mode).astype(final_dtype)
|
||||||
|
|
||||||
|
def _compute_1D_conv(a, v, mode):
|
||||||
|
"""Returns a 1-D sequence which is the cross-correlate of two 1-D sequences (`a` and `v`)."""
|
||||||
|
v_size = F.shape_mul(v.shape)
|
||||||
if mode not in ('same', 'full', 'valid'):
|
if mode not in ('same', 'full', 'valid'):
|
||||||
_raise_value_error("mode must be one of ['full', 'same', 'valid']")
|
_raise_value_error("mode must be one of ['full', 'same', 'valid']")
|
||||||
if v_size > 1:
|
if v_size > 1:
|
||||||
|
@ -2247,8 +2254,7 @@ def convolve(a, v, mode='full'):
|
||||||
a = a.reshape(1, 1, 1, a.size)
|
a = a.reshape(1, 1, 1, a.size)
|
||||||
v = v.reshape(1, 1, 1, v.size)
|
v = v.reshape(1, 1, 1, v.size)
|
||||||
_conv = P.Conv2D(1, (1, v.size))
|
_conv = P.Conv2D(1, (1, v.size))
|
||||||
return _conv(a, v).reshape(-1).astype(final_dtype)
|
return _conv(a, v).reshape(-1)
|
||||||
|
|
||||||
|
|
||||||
def _handle_weights(weights, num_samples):
|
def _handle_weights(weights, num_samples):
|
||||||
"""Checks fweight and aweight in np.cov."""
|
"""Checks fweight and aweight in np.cov."""
|
||||||
|
|
|
@ -1717,7 +1717,7 @@ def onp_convolve(mode):
|
||||||
return a, b, c, d, e
|
return a, b, c, d, e
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_x86_gpu_training
|
@pytest.mark.platform_x86_gpu_training
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_convolve():
|
def test_convolve():
|
||||||
|
|
|
@ -103,7 +103,7 @@ def test_matmul_composite():
|
||||||
for y in scalars:
|
for y in scalars:
|
||||||
output = net(Tensor(x), Tensor(y))
|
output = net(Tensor(x), Tensor(y))
|
||||||
expect = np.matmul(x, y)
|
expect = np.matmul(x, y)
|
||||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||||
|
|
||||||
broadcastables = [
|
broadcastables = [
|
||||||
np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32),
|
np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32),
|
||||||
|
@ -120,4 +120,4 @@ def test_matmul_composite():
|
||||||
y = broadcastables[2*i + 1]
|
y = broadcastables[2*i + 1]
|
||||||
output = net(Tensor(x), Tensor(y))
|
output = net(Tensor(x), Tensor(y))
|
||||||
expect = np.matmul(x, y)
|
expect = np.matmul(x, y)
|
||||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||||
|
|
Loading…
Reference in New Issue