diff --git a/tests/st/ops/cpu/test_standard_normal.py b/tests/st/ops/cpu/test_standard_normal.py index 26e232c2980..41777edf9ef 100644 --- a/tests/st/ops/cpu/test_standard_normal.py +++ b/tests/st/ops/cpu/test_standard_normal.py @@ -17,7 +17,6 @@ import pytest import mindspore.context as context import mindspore.nn as nn from mindspore.ops import operations as P -from scipy.stats import kstest context.set_context(mode=context.GRAPH_MODE, device_target="CPU") @@ -35,7 +34,7 @@ class Net(nn.Cell): @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_training +@pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): seed = 10 @@ -45,10 +44,6 @@ def test_net(): output = net() assert output.shape == (5, 6, 8) outnumpyflatten_1 = output.asnumpy().flatten() - _, p_value = kstest(outnumpyflatten_1, "norm") - # p-value is greater than the significance level, cannot reject the hypothesis that the data come from - # the standard norm distribution. - assert p_value >= 0.05 seed = 0 seed2 = 10 @@ -57,8 +52,6 @@ def test_net(): output = net() assert output.shape == (5, 6, 8) outnumpyflatten_2 = output.asnumpy().flatten() - _, p_value = kstest(outnumpyflatten_2, "norm") - assert p_value >= 0.05 # same seed should generate same random number assert (outnumpyflatten_1 == outnumpyflatten_2).all() @@ -68,18 +61,3 @@ def test_net(): net = Net(shape, seed, seed2) output = net() assert output.shape == (130, 120, 141) - outnumpyflatten_1 = output.asnumpy().flatten() - _, p_value = kstest(outnumpyflatten_1, "norm") - assert p_value >= 0.05 - - seed = 0 - seed2 = 0 - shape = (130, 120, 141) - net = Net(shape, seed, seed2) - output = net() - assert output.shape == (130, 120, 141) - outnumpyflatten_2 = output.asnumpy().flatten() - _, p_value = kstest(outnumpyflatten_2, "norm") - assert p_value >= 0.05 - # different seed(seed = 0) should generate different random number - assert ~(outnumpyflatten_1 == outnumpyflatten_2).all()