forked from mindspore-Ecosystem/mindspore
!363 clear the warmming scan by package
Merge pull request !363 from SanjayChan/labao
This commit is contained in:
commit
58b013c319
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
DropoutGpuFwdKernel::DropoutGpuFwdKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
is_null_input_(false),
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(BatchNormFold2,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
|
|
@ -132,7 +132,6 @@ class BatchNormFold2GpuKernel : public GpuKernel {
|
|||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(BatchNormFold2Grad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(BatchNormFold,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
|
|
@ -54,7 +54,6 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
if (input_shape.size() != 4) {
|
||||
MS_LOG(ERROR) << "CorrectionMulGpuKernel input shape needs (N,C,H,W).";
|
||||
return false;
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(CorrectionMulGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
|
|
@ -61,7 +61,6 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
if (input_shape.size() != 4) {
|
||||
MS_LOG(ERROR) << "CorrectionMulGradGpuKernel input shape needs (N,C,H,W).";
|
||||
return false;
|
||||
|
|
|
@ -114,6 +114,36 @@ void FakeQuantPerChannelGpuKernel::InitSizeLists() {
|
|||
workspace_size_list_.push_back(workspace_size_);
|
||||
}
|
||||
|
||||
void FakeQuantPerChannelGpuKernel::CalFakeQuantizeForTraining(float *input, float *output, float *input_min,
|
||||
float *input_max, float *d_nudge_min, float *d_nudge_max,
|
||||
float *d_scale, uintptr_t stream_ptr) {
|
||||
// calculate the input min and max according by the parameter ema and ema_decay.
|
||||
CalMinMaxPerChannel(input, input_min, input_max, input_size_ / sizeof(float), channel_out_, ema_decay_, ema_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
// control flow for quant_delay
|
||||
if (global_step_ >= quant_delay_) {
|
||||
// real launch
|
||||
CalNudgePerChannel(input_min, input_max, quant_min_, quant_max_, d_nudge_min, d_nudge_max, d_scale, channel_out_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizePerChannel(input, output, input_size_ / sizeof(float), channel_out_, d_nudge_min, d_nudge_max,
|
||||
d_scale, symmetric_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
} else {
|
||||
CHECK_CUDA_RET_WITH_ERROR(cudaMemcpy(output, input, input_size_, cudaMemcpyDeviceToDevice),
|
||||
"Copy gpu memory failed.");
|
||||
}
|
||||
global_step_++;
|
||||
}
|
||||
|
||||
void FakeQuantPerChannelGpuKernel::CalFakeQuantizeForInfer(float *input, float *output, float *input_min,
|
||||
float *input_max, float *d_nudge_min, float *d_nudge_max,
|
||||
float *d_scale, uintptr_t stream_ptr) {
|
||||
// real launch
|
||||
CalNudgePerChannel(input_min, input_max, quant_min_, quant_max_, d_nudge_min, d_nudge_max, d_scale, channel_out_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizePerChannel(input, output, input_size_ / sizeof(float), channel_out_, d_nudge_min, d_nudge_max, d_scale,
|
||||
symmetric_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
}
|
||||
|
||||
bool FakeQuantPerChannelGpuKernel::Launch(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
|
@ -126,11 +156,8 @@ bool FakeQuantPerChannelGpuKernel::Launch(const std::vector<AddressPtr> &inputs,
|
|||
if (input == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "FakeQuantPerChannelGpuKernel input is null.";
|
||||
}
|
||||
if (input_min == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "FakeQuantPerChannelGpuKernel input min is null.";
|
||||
}
|
||||
if (input_max == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "FakeQuantPerChannelGpuKernel input max is null.";
|
||||
if (input_min == nullptr || input_max == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "FakeQuantPerChannelGpuKernel input min or max is null.";
|
||||
}
|
||||
|
||||
// Allocate space for device copies
|
||||
|
@ -143,30 +170,11 @@ bool FakeQuantPerChannelGpuKernel::Launch(const std::vector<AddressPtr> &inputs,
|
|||
"Malloc gpu memory failed");
|
||||
CHECK_CUDA_RET_WITH_ERROR(cudaMalloc(reinterpret_cast<void **>(&d_nudge_max), sizeof(float) * channel_out_),
|
||||
"Malloc gpu memory failed");
|
||||
int total_size = input_size_ / sizeof(float);
|
||||
bool symmetric = false;
|
||||
|
||||
if (training_) {
|
||||
// calculate the input min and max according by the parameter ema and ema_decay.
|
||||
CalMinMaxPerChannel(input, input_min, input_max, total_size, channel_out_, ema_decay_, ema_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
// control flow for quant_delay
|
||||
if (global_step_ >= quant_delay_) {
|
||||
// real launch
|
||||
CalNudgePerChannel(input_min, input_max, quant_min_, quant_max_, d_nudge_min, d_nudge_max, d_scale, channel_out_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizePerChannel(input, output, total_size, channel_out_, d_nudge_min, d_nudge_max, d_scale, symmetric,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizeForTraining(input, output, input_min, input_max, d_nudge_min, d_nudge_max, d_scale, stream_ptr);
|
||||
} else {
|
||||
CHECK_CUDA_RET_WITH_ERROR(cudaMemcpy(output, input, input_size_, cudaMemcpyDeviceToDevice),
|
||||
"Copy gpu memory failed.");
|
||||
}
|
||||
global_step_++;
|
||||
} else {
|
||||
// real launch
|
||||
CalNudgePerChannel(input_min, input_max, quant_min_, quant_max_, d_nudge_min, d_nudge_max, d_scale, channel_out_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizePerChannel(input, output, total_size, channel_out_, d_nudge_min, d_nudge_max, d_scale, symmetric,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFakeQuantizeForInfer(input, output, input_min, input_max, d_nudge_min, d_nudge_max, d_scale, stream_ptr);
|
||||
}
|
||||
|
||||
// Cleanup
|
||||
|
|
|
@ -39,6 +39,11 @@ class FakeQuantPerChannelGpuKernel : public GpuKernel {
|
|||
void InitSizeLists() override;
|
||||
|
||||
private:
|
||||
void CalFakeQuantizeForTraining(float *input, float *output, float *input_min, float *input_max, float *d_nudge_min,
|
||||
float *d_nudge_max, float *d_scale, uintptr_t stream_ptr);
|
||||
void CalFakeQuantizeForInfer(float *input, float *output, float *input_min, float *input_max, float *d_nudge_min,
|
||||
float *d_nudge_max, float *d_scale, uintptr_t stream_ptr);
|
||||
|
||||
size_t input_size_;
|
||||
size_t min_size_;
|
||||
size_t max_size_;
|
||||
|
|
Loading…
Reference in New Issue