forked from mindspore-Ecosystem/mindspore
Performance optimization of embedding_lookup
This commit is contained in:
parent
657b547116
commit
57cb1eeb14
|
@ -17,143 +17,21 @@
|
|||
#include <string>
|
||||
#include "backend/kernel_compiler/cpu/embedding_look_up_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "runtime/device/cpu/mpi/mpi_adapter.h"
|
||||
#include "ir/primitive.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void EmbeddingLookUpCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_lens_ = 1;
|
||||
for (auto shape : input_shape_) {
|
||||
input_lens_ = input_lens_ * shape;
|
||||
}
|
||||
indices_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
indices_lens_ = 1;
|
||||
for (auto shape : indices_shape_) {
|
||||
indices_lens_ = indices_lens_ * shape;
|
||||
}
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
axis_ = 4 - input_shape_.size();
|
||||
if (AnfAlgo::HasNodeAttr(kAttrReduceScatterFlag, kernel_node)) {
|
||||
reduce_scatter_flag_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, kAttrReduceScatterFlag);
|
||||
}
|
||||
#ifdef ENABLE_MPI
|
||||
if (reduce_scatter_flag_) {
|
||||
size_t gatherv2_out_lens = 1;
|
||||
for (int i = 0; i < SizeToInt(input_shape_.size()); i++) {
|
||||
if (i == 0) {
|
||||
for (int j = 0; j < SizeToInt(indices_shape_.size()); j++) {
|
||||
gatherv2_out_lens = gatherv2_out_lens * indices_shape_[j];
|
||||
}
|
||||
} else {
|
||||
gatherv2_out_lens = gatherv2_out_lens * input_shape_[i];
|
||||
}
|
||||
}
|
||||
gatherv2_out_lens_ = gatherv2_out_lens * sizeof(float);
|
||||
gather_v2_out_ = malloc(gatherv2_out_lens_);
|
||||
if (gather_v2_out_ == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "EmbeddingLookUpCPUKernel malloc failed, malloc lens: " << gatherv2_out_lens_;
|
||||
}
|
||||
auto ret = memset_s(gather_v2_out_, gatherv2_out_lens_, 0, gatherv2_out_lens_);
|
||||
if (ret != 0) {
|
||||
MS_LOG(EXCEPTION) << "EmbeddingLookUpCPUKernel memset gatherv2 out buff failed";
|
||||
}
|
||||
split_num_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "split_num");
|
||||
}
|
||||
#else
|
||||
if (reduce_scatter_flag_) {
|
||||
MS_LOG(EXCEPTION) << "Not Enable MPI, please build version with -M on when set reduce_scatter_flag true";
|
||||
}
|
||||
#endif
|
||||
if (AnfAlgo::HasNodeAttr(kAttrOffset, kernel_node)) {
|
||||
offset_ = AnfAlgo::GetNodeAttr<int>(kernel_node, kAttrOffset);
|
||||
}
|
||||
CPUKernelUtils::ExpandDimsTo4(&input_shape_);
|
||||
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
|
||||
}
|
||||
|
||||
bool EmbeddingLookUpCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
float *gather_out_addr = reduce_scatter_flag_ ? reinterpret_cast<float *>(gather_v2_out_) : output_addr;
|
||||
size_t dim0 = input_shape_[0];
|
||||
size_t dim1 = input_shape_[1];
|
||||
size_t dim2 = input_shape_[2];
|
||||
if (axis_ == 3) {
|
||||
for (size_t i = 0; i < dim0; ++i) {
|
||||
for (size_t j = 0; j < dim1; ++j) {
|
||||
for (size_t k = 0; k < dim2; ++k) {
|
||||
LookUpTable(inputs, i, j, k, &gather_out_addr);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (axis_ == 2) {
|
||||
for (size_t i = 0; i < dim0; ++i) {
|
||||
for (size_t j = 0; j < dim1; ++j) {
|
||||
LookUpTable(inputs, i, j, 0, &gather_out_addr);
|
||||
}
|
||||
}
|
||||
} else if (axis_ == 1) {
|
||||
for (size_t i = 0; i < dim0; ++i) {
|
||||
LookUpTable(inputs, i, 0, 0, &gather_out_addr);
|
||||
}
|
||||
} else if (axis_ == 0) {
|
||||
LookUpTable(inputs, 0, 0, 0, &gather_out_addr);
|
||||
}
|
||||
#ifdef ENABLE_MPI
|
||||
if (reduce_scatter_flag_) {
|
||||
size_t one_split_lens = gatherv2_out_lens_ / split_num_ / sizeof(float);
|
||||
size_t reduce_scatter_out_lens = one_split_lens / 8;
|
||||
const std::vector<int> &group = {0, 1, 2, 3, 4, 5, 6, 7};
|
||||
auto mpi_instance = device::cpu::MPIAdapter::Instance();
|
||||
MS_EXCEPTION_IF_NULL(mpi_instance);
|
||||
for (int i = 0; i < split_num_; i++) {
|
||||
mpi_instance->ReduceScatter(reinterpret_cast<float *>(gather_v2_out_) + i * one_split_lens,
|
||||
output_addr + i * reduce_scatter_out_lens, group, one_split_lens / 8, "sum");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
void LookUpTable_task(const float *input_addr, float *output_addr, const int *indices_addr, size_t indices_lens,
|
||||
size_t num, size_t dim0, size_t dim1, size_t dim2, int offset, size_t axis,
|
||||
std::vector<size_t> input_shape, size_t input_lens) {
|
||||
size_t lens = num * sizeof(float);
|
||||
namespace {
|
||||
void LookUpTableTask(const float *input_addr, const int *indices_addr, float *output_addr, size_t indices_lens,
|
||||
size_t outer_dim_size, int offset, size_t first_dim_size) {
|
||||
size_t lens = outer_dim_size * sizeof(float);
|
||||
for (size_t i = 0; i < indices_lens; ++i) {
|
||||
int indices = indices_addr[i] - offset;
|
||||
if (indices >= 0) {
|
||||
size_t index = IntToSize(indices);
|
||||
if (index < input_shape[axis]) {
|
||||
size_t pos = 0;
|
||||
if (axis == 3) {
|
||||
pos = CPUKernelUtils::CalcOffset(input_shape, dim0, dim1, dim2, index);
|
||||
} else if (axis == 2) {
|
||||
pos = CPUKernelUtils::CalcOffset(input_shape, dim0, dim1, index, 0);
|
||||
} else if (axis == 1) {
|
||||
pos = CPUKernelUtils::CalcOffset(input_shape, dim0, index, 0, 0);
|
||||
} else if (axis == 0) {
|
||||
pos = CPUKernelUtils::CalcOffset(input_shape, index, 0, 0, 0);
|
||||
}
|
||||
if (pos + num <= input_lens) {
|
||||
auto ret = memcpy_s(output_addr, lens, input_addr + pos, lens);
|
||||
if (ret != EOK) {
|
||||
MS_LOG(EXCEPTION) << "LookUpTable task memcpy failed.";
|
||||
}
|
||||
} else {
|
||||
auto ret = memset_s(output_addr, lens, 0, lens);
|
||||
if (ret != EOK) {
|
||||
MS_LOG(EXCEPTION) << "LookUpTable task memset failed.";
|
||||
}
|
||||
}
|
||||
} else {
|
||||
auto ret = memset_s(output_addr, lens, 0, lens);
|
||||
if (ret != EOK) {
|
||||
MS_LOG(EXCEPTION) << "LookUpTable task memset failed.";
|
||||
}
|
||||
int index = indices_addr[i] - offset;
|
||||
if (index >= 0 && index < SizeToInt(first_dim_size)) {
|
||||
size_t pos = index * outer_dim_size;
|
||||
auto ret = memcpy_s(output_addr, lens, input_addr + pos, lens);
|
||||
if (ret != EOK) {
|
||||
MS_LOG(EXCEPTION) << "LookUpTable task memcpy failed.";
|
||||
}
|
||||
} else {
|
||||
auto ret = memset_s(output_addr, lens, 0, lens);
|
||||
|
@ -161,16 +39,36 @@ void LookUpTable_task(const float *input_addr, float *output_addr, const int *in
|
|||
MS_LOG(EXCEPTION) << "LookUpTable task memset failed.";
|
||||
}
|
||||
}
|
||||
output_addr += num;
|
||||
output_addr += outer_dim_size;
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void EmbeddingLookUpCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (input_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "param must be at least 1D";
|
||||
}
|
||||
first_dim_size_ = input_shape[0];
|
||||
for (size_t i = 1; i < input_shape.size(); ++i) {
|
||||
outer_dim_size_ *= input_shape[i];
|
||||
}
|
||||
std::vector<size_t> indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
for (const auto &shape : indices_shape) {
|
||||
indices_lens_ *= shape;
|
||||
}
|
||||
if (AnfAlgo::HasNodeAttr(kAttrOffset, kernel_node)) {
|
||||
offset_ = AnfAlgo::GetNodeAttr<int>(kernel_node, kAttrOffset);
|
||||
}
|
||||
}
|
||||
|
||||
void EmbeddingLookUpCPUKernel::LookUpTable(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1,
|
||||
size_t dim2, float **output_addr) {
|
||||
bool EmbeddingLookUpCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto input_addr = reinterpret_cast<float *>(inputs[0]->addr);
|
||||
auto indices_addr = reinterpret_cast<int *>(inputs[1]->addr);
|
||||
size_t num = CPUKernelUtils::GetElementNumOnAxis(input_shape_, axis_);
|
||||
float *task_out_addr = *output_addr;
|
||||
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
const size_t thread_num = 8;
|
||||
std::thread threads[8];
|
||||
size_t task_proc_lens = (indices_lens_ + thread_num - 1) / thread_num;
|
||||
|
@ -183,8 +81,8 @@ void EmbeddingLookUpCPUKernel::LookUpTable(const std::vector<kernel::AddressPtr>
|
|||
}
|
||||
MS_LOG(DEBUG) << "task_offset: " << task_offset << " task_proc_lenss:" << task_proc_lens;
|
||||
threads[i] =
|
||||
std::thread(LookUpTable_task, input_addr, task_out_addr + task_offset * num, indices_addr + task_offset,
|
||||
task_proc_lens, num, dim0, dim1, dim2, offset_, axis_, input_shape_, input_lens_);
|
||||
std::thread(LookUpTableTask, input_addr, indices_addr + task_offset, output_addr + task_offset * outer_dim_size_,
|
||||
task_proc_lens, outer_dim_size_, offset_, first_dim_size_);
|
||||
task_offset += task_proc_lens;
|
||||
if (task_offset + task_proc_lens > indices_lens_) {
|
||||
task_proc_lens = indices_lens_ - task_offset;
|
||||
|
@ -193,14 +91,14 @@ void EmbeddingLookUpCPUKernel::LookUpTable(const std::vector<kernel::AddressPtr>
|
|||
for (size_t j = 0; j < i; j++) {
|
||||
threads[j].join();
|
||||
}
|
||||
*output_addr += num * indices_lens_;
|
||||
return true;
|
||||
}
|
||||
|
||||
void EmbeddingLookUpCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (input_shape.size() > 4) {
|
||||
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size()
|
||||
<< ", but EmbeddingLookUpCPUKernel olny support 4d or lower.";
|
||||
<< ", but EmbeddingLookUpCPUKernel only support 4d or lower.";
|
||||
}
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
|
|
@ -24,22 +24,8 @@ namespace mindspore {
|
|||
namespace kernel {
|
||||
class EmbeddingLookUpCPUKernel : public CPUKernel {
|
||||
public:
|
||||
EmbeddingLookUpCPUKernel() {
|
||||
axis_ = 0;
|
||||
offset_ = 0;
|
||||
split_num_ = 0;
|
||||
input_lens_ = 0;
|
||||
indices_lens_ = 0;
|
||||
gatherv2_out_lens_ = 0;
|
||||
reduce_scatter_flag_ = false;
|
||||
gather_v2_out_ = nullptr;
|
||||
}
|
||||
~EmbeddingLookUpCPUKernel() override {
|
||||
if (gather_v2_out_ != nullptr) {
|
||||
free(gather_v2_out_);
|
||||
gather_v2_out_ = nullptr;
|
||||
}
|
||||
}
|
||||
EmbeddingLookUpCPUKernel() {}
|
||||
~EmbeddingLookUpCPUKernel() override {}
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
|
@ -47,21 +33,11 @@ class EmbeddingLookUpCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
protected:
|
||||
void LookUpTable(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1, size_t dim2,
|
||||
float **output_addr);
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> indices_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
int axis_;
|
||||
int offset_;
|
||||
int split_num_;
|
||||
size_t input_lens_;
|
||||
size_t indices_lens_;
|
||||
size_t gatherv2_out_lens_;
|
||||
bool reduce_scatter_flag_;
|
||||
|
||||
void *gather_v2_out_;
|
||||
int offset_{0};
|
||||
size_t indices_lens_{1};
|
||||
size_t first_dim_size_{1};
|
||||
size_t outer_dim_size_{1};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
|
|
|
@ -22,8 +22,13 @@ namespace kernel {
|
|||
namespace ps {
|
||||
void EmbeddingLookUpProxyKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
EmbeddingLookUpCPUKernel::InitKernel(kernel_node);
|
||||
|
||||
for (auto dim : input_shape_) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
size_t axis = kShape4dDims - input_shape.size();
|
||||
CPUKernelUtils::ExpandDimsTo4(&input_shape);
|
||||
CPUKernelUtils::ExpandDimsTo4(&output_shape);
|
||||
for (auto dim : input_shape) {
|
||||
input_dims_ *= dim;
|
||||
}
|
||||
|
||||
|
@ -32,14 +37,13 @@ void EmbeddingLookUpProxyKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
}
|
||||
std::vector<size_t> keys{key_, key_, key_};
|
||||
std::vector<size_t> values;
|
||||
values.insert(values.end(), input_shape_.begin(), input_shape_.end());
|
||||
values.insert(values.end(), indices_shape_.begin(), indices_shape_.end());
|
||||
values.insert(values.end(), output_shape_.begin(), output_shape_.end());
|
||||
std::vector<int> lens{SizeToInt(input_shape_.size()), SizeToInt(indices_shape_.size()),
|
||||
SizeToInt(output_shape_.size())};
|
||||
values.insert(values.end(), input_shape.begin(), input_shape.end());
|
||||
values.insert(values.end(), indices_shape.begin(), indices_shape.end());
|
||||
values.insert(values.end(), output_shape.begin(), output_shape.end());
|
||||
std::vector<int> lens{SizeToInt(input_shape.size()), SizeToInt(indices_shape.size()), SizeToInt(output_shape.size())};
|
||||
const char *env_role = getenv(mindspore::parallel::ps::kEnvRole);
|
||||
if (env_role != nullptr && strcmp(env_role, mindspore::parallel::ps::kEnvRoleOfWorker) == 0) {
|
||||
parallel::ps::Worker<float>::GetInstance().AddEmbeddingTable(key_, input_shape_[axis_]);
|
||||
parallel::ps::Worker<float>::GetInstance().AddEmbeddingTable(key_, input_shape[axis]);
|
||||
parallel::ps::Worker<float>::GetInstance().InitPSEmbeddingTable(keys, values, lens);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -25,47 +25,40 @@ namespace mindspore {
|
|||
namespace kernel {
|
||||
namespace ps {
|
||||
using mindspore::parallel::ps::Util;
|
||||
constexpr int kAxis = 2;
|
||||
void EmbeddingLookUpPSKernel::InitKernel(
|
||||
const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
|
||||
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
|
||||
input_shape_ = *(shape_vec[0]);
|
||||
input_lens_ = 1;
|
||||
for (auto shape : input_shape_) {
|
||||
input_lens_ = input_lens_ * shape;
|
||||
}
|
||||
indices_shape_ = *(shape_vec[1]);
|
||||
auto indices_shape = *(shape_vec[1]);
|
||||
indices_lens_ = 1;
|
||||
for (auto shape : indices_shape_) {
|
||||
for (auto shape : indices_shape) {
|
||||
indices_lens_ = indices_lens_ * shape;
|
||||
}
|
||||
output_shape_ = *(shape_vec[2]);
|
||||
axis_ = 2;
|
||||
reduce_scatter_flag_ = false;
|
||||
auto output_shape = *(shape_vec[2]);
|
||||
|
||||
size_t offset = 0;
|
||||
for (size_t i = 0; i < rank_id_; i++) {
|
||||
offset += Util::LocalShard(input_shape_[axis_], i, pserver_num_);
|
||||
offset += Util::LocalShard(input_shape_[kAxis], i, pserver_num_);
|
||||
}
|
||||
offset_ = offset;
|
||||
split_num_ = pserver_num_;
|
||||
|
||||
// input shape should be sharded after computing offset_;
|
||||
Shard(&input_shape_, axis_);
|
||||
Shard(&input_shape_, kAxis);
|
||||
|
||||
size_t output_size =
|
||||
std::accumulate(output_shape_.begin(), output_shape_.end(), sizeof(float), std::multiplies<size_t>());
|
||||
std::accumulate(output_shape.begin(), output_shape.end(), sizeof(float), std::multiplies<size_t>());
|
||||
output_size_list_.emplace_back(output_size);
|
||||
CPUKernelUtils::ExpandDimsTo4(&input_shape_);
|
||||
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
|
||||
}
|
||||
|
||||
void EmbeddingLookUpPSKernel::ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
|
||||
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
|
||||
const auto &indices_shape_ = *(shape_vec[0]);
|
||||
indices_lens_ = indices_shape_[0];
|
||||
const auto &indices_shape = *(shape_vec[0]);
|
||||
indices_lens_ = indices_shape[0];
|
||||
|
||||
size_t output_size = sizeof(float) * indices_lens_;
|
||||
for (size_t i = axis_ + 1; i < input_shape_.size(); i++) {
|
||||
for (size_t i = kAxis + 1; i < input_shape_.size(); i++) {
|
||||
output_size *= input_shape_[i];
|
||||
}
|
||||
output_size_list_.clear();
|
||||
|
|
|
@ -38,6 +38,9 @@ class EmbeddingLookUpPSKernel : public EmbeddingLookUpCPUKernel, public PServerK
|
|||
const std::vector<size_t> &input_sizes() const override;
|
||||
const std::vector<size_t> &output_sizes() const override;
|
||||
const std::vector<size_t> &workspace_sizes() const override;
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_shape_;
|
||||
};
|
||||
} // namespace ps
|
||||
} // namespace kernel
|
||||
|
|
|
@ -27,12 +27,12 @@ void ComputeAdam(MultiThreadComputeParams *input_params, size_t start, size_t en
|
|||
auto m = input_params->m_;
|
||||
auto m_t = input_params->m_t_;
|
||||
auto v = input_params->v_;
|
||||
auto beta1 = input_params->beta1_;
|
||||
auto beta2 = input_params->beta2_;
|
||||
auto use_nesterov = input_params->use_nesterov_;
|
||||
auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
const auto beta1 = input_params->beta1_;
|
||||
const auto beta2 = input_params->beta2_;
|
||||
const auto use_nesterov = input_params->use_nesterov_;
|
||||
const auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
const auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
const auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
int index = unique_sparse_grad.indices_[i];
|
||||
if (index < 0 || IntToSize(index) >= var_first_dim_size) {
|
||||
|
@ -55,8 +55,8 @@ void ComputeMomentum(MultiThreadComputeParams *input_params, size_t start, size_
|
|||
MS_EXCEPTION_IF_NULL(input_params);
|
||||
auto m = input_params->m_;
|
||||
auto v = input_params->v_;
|
||||
auto beta1 = input_params->beta1_;
|
||||
auto beta2 = input_params->beta2_;
|
||||
const auto beta1 = input_params->beta1_;
|
||||
const auto beta2 = input_params->beta2_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
m[i] *= beta1;
|
||||
v[i] *= beta2;
|
||||
|
@ -66,10 +66,10 @@ void ComputeMomentum(MultiThreadComputeParams *input_params, size_t start, size_
|
|||
void ComputeWeight(MultiThreadComputeParams *input_params, size_t start, size_t end) {
|
||||
MS_EXCEPTION_IF_NULL(input_params);
|
||||
auto var = input_params->var_;
|
||||
auto m = input_params->m_;
|
||||
auto v = input_params->v_;
|
||||
auto lr = input_params->lr_;
|
||||
auto epsilon = input_params->epsilon_;
|
||||
const auto *m = input_params->m_;
|
||||
const auto *v = input_params->v_;
|
||||
const auto lr = input_params->lr_;
|
||||
const auto epsilon = input_params->epsilon_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
var[i] -= lr * m[i] / (std::sqrt(v[i]) + epsilon);
|
||||
}
|
||||
|
|
|
@ -27,13 +27,13 @@ void ComputeFtrl(MultiThreadComputeParams *input_params, size_t start, size_t en
|
|||
auto var = input_params->var_;
|
||||
auto accum = input_params->accum_;
|
||||
auto linear = input_params->linear_;
|
||||
auto lr = input_params->lr_;
|
||||
auto l1 = input_params->l1_;
|
||||
auto l2_plus = 2 * input_params->l2_;
|
||||
auto lr_power = input_params->lr_power_;
|
||||
auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
const auto lr = input_params->lr_;
|
||||
const auto l1 = input_params->l1_;
|
||||
const auto l2_plus = 2 * input_params->l2_;
|
||||
const auto lr_power = input_params->lr_power_;
|
||||
const auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
const auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
const auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
int index = unique_sparse_grad.indices_[i];
|
||||
if (index < 0 || IntToSize(index) >= var_first_dim_size) {
|
||||
|
|
|
@ -27,14 +27,14 @@ void ComputeLazyAdam(MultiThreadComputeParams *input_params, size_t start, size_
|
|||
auto var = input_params->var_;
|
||||
auto m = input_params->m_;
|
||||
auto v = input_params->v_;
|
||||
auto lr = input_params->lr_;
|
||||
auto beta1 = input_params->beta1_;
|
||||
auto beta2 = input_params->beta2_;
|
||||
auto epsilon = input_params->epsilon_;
|
||||
auto use_nesterov = input_params->use_nesterov_;
|
||||
auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
const auto lr = input_params->lr_;
|
||||
const auto beta1 = input_params->beta1_;
|
||||
const auto beta2 = input_params->beta2_;
|
||||
const auto epsilon = input_params->epsilon_;
|
||||
const auto use_nesterov = input_params->use_nesterov_;
|
||||
const auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
const auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
const auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
int index = unique_sparse_grad.indices_[i];
|
||||
if (index < 0 || IntToSize(index) >= var_first_dim_size) {
|
||||
|
|
|
@ -26,12 +26,12 @@ void ComputeProximalAdagrad(MultiThreadComputeParams *input_params, size_t start
|
|||
MS_EXCEPTION_IF_NULL(input_params);
|
||||
auto var = input_params->var_;
|
||||
auto accum = input_params->accum_;
|
||||
auto lr = input_params->lr_;
|
||||
auto l1 = input_params->l1_;
|
||||
auto l2 = input_params->l2_;
|
||||
auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
const auto lr = input_params->lr_;
|
||||
const auto l1 = input_params->l1_;
|
||||
const auto l2 = input_params->l2_;
|
||||
const auto unique_sparse_grad = input_params->sparse_grad_;
|
||||
const auto var_first_dim_size = input_params->var_first_dim_size_;
|
||||
const auto var_outer_dim_size = input_params->var_outer_dim_size_;
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
int index = unique_sparse_grad.indices_[i];
|
||||
if (index < 0 || IntToSize(index) >= var_first_dim_size) {
|
||||
|
|
|
@ -54,7 +54,7 @@ AnfNodePtr CreateNewPack(const FuncGraphPtr &func_graph, const CNodePtr &origin_
|
|||
} else if (i == IntToSize(axis)) {
|
||||
new_shape.push_back(offset);
|
||||
} else {
|
||||
new_shape.push_back(output_shape[i - 1]);
|
||||
new_shape.push_back(output_shape[SizeToInt(i) - 1]);
|
||||
}
|
||||
}
|
||||
new_shape.erase(new_shape.begin() + axis + 1);
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, offset):
|
||||
super(Net, self).__init__()
|
||||
self.embedding = P.EmbeddingLookup()
|
||||
self.offset = offset
|
||||
|
||||
def construct(self, param, index):
|
||||
return self.embedding(param, index, self.offset)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_embedding_look_up0():
|
||||
params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.float32)
|
||||
indices = Tensor(np.array([5, 2, 8, 5]), mstype.int32)
|
||||
offset = 4
|
||||
embedding = Net(offset)
|
||||
out = embedding(params, indices)
|
||||
expect = np.array([[10, 11], [0, 0], [0, 0], [10, 11]]).astype(np.float32)
|
||||
assert (out.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_embedding_look_up1():
|
||||
params = Tensor(np.array([[8, 9], [10, 11]]), mstype.float32)
|
||||
indices = Tensor(np.array([2, 2, 1, 0]), mstype.int32)
|
||||
offset = 0
|
||||
embedding = Net(offset)
|
||||
out = embedding(params, indices)
|
||||
expect = np.array([[0, 0], [0, 0], [10, 11], [8, 9]]).astype(np.float32)
|
||||
assert (out.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_embedding_look_up2():
|
||||
params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.float32)
|
||||
indices = Tensor(np.array([[5, 2], [8, 5]]), mstype.int32)
|
||||
offset = 4
|
||||
embedding = Net(offset)
|
||||
out = embedding(params, indices)
|
||||
expect = np.array([[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).astype(np.float32)
|
||||
assert (out.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_embedding_look_up3():
|
||||
params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.float32)
|
||||
indices = Tensor(np.array([[[5], [2]], [[8], [5]]]), mstype.int32)
|
||||
offset = 4
|
||||
embedding = Net(offset)
|
||||
out = embedding(params, indices)
|
||||
expect = np.array([[[[10, 11]], [[0, 0]]], [[[0, 0]], [[10, 11]]]]).astype(np.float32)
|
||||
assert (out.asnumpy() == expect).all()
|
Loading…
Reference in New Issue