forked from mindspore-Ecosystem/mindspore
!3191 Fix doc error of optim API
Merge pull request !3191 from Simson/doc-fix
This commit is contained in:
commit
57252dee24
|
@ -41,7 +41,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, grad
|
|||
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
|
||||
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
||||
lr (Tensor): Learning rate.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be equal to or greater than 0.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
|
||||
param (Tensor): Parameters.
|
||||
m (Tensor): m value of parameters.
|
||||
v (Tensor): v value of parameters.
|
||||
|
@ -252,8 +252,8 @@ class Adam(Optimizer):
|
|||
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
|
||||
If True, updates the gradients using NAG.
|
||||
If False, updates the gradients without using NAG. Default: False.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. Default: 1.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be not less than 1.0. Default: 1.0.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
|
@ -392,7 +392,7 @@ class AdamWeightDecay(Optimizer):
|
|||
Should be in range (0.0, 1.0).
|
||||
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
|
||||
Should be greater than 0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
|
||||
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
|
||||
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
|
||||
|
||||
|
@ -457,7 +457,7 @@ class AdamWeightDecayDynamicLR(Optimizer):
|
|||
Should be in range (0.0, 1.0).
|
||||
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
|
||||
Should be greater than 0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
|
||||
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
|
||||
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
|
||||
|
||||
|
|
|
@ -128,7 +128,7 @@ class FTRL(Optimizer):
|
|||
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
|
||||
use_locking (bool): If True use locks for update operation. Default: False.
|
||||
loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0.
|
||||
wegith_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
|
||||
wegith_decay (float): Weight decay value to multiply weight, should be in range [0.0, 1.0]. Default: 0.0.
|
||||
|
||||
Inputs:
|
||||
- **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
|
||||
|
|
|
@ -44,7 +44,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
|
|||
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
|
||||
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
||||
lr (Tensor): Learning rate.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be equal to or greater than 0.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
|
||||
global_step (Tensor): Global step.
|
||||
param (Tensor): Parameters.
|
||||
m (Tensor): m value of parameters.
|
||||
|
@ -128,7 +128,7 @@ def _update_run_op_graph_kernel(beta1, beta2, eps, lr, weight_decay_tensor,
|
|||
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
|
||||
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
||||
lr (Tensor): Learning rate.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be equal to or greater than 0.
|
||||
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
|
||||
global_step (Tensor): Global step.
|
||||
param (Tensor): Parameters.
|
||||
m (Tensor): m value of parameters.
|
||||
|
@ -229,7 +229,7 @@ class Lamb(Optimizer):
|
|||
Should be in range (0.0, 1.0).
|
||||
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
|
||||
Should be greater than 0.
|
||||
weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be equal to or greater than 0.
|
||||
weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be in range [0.0, 1.0].
|
||||
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
|
||||
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
|
||||
|
||||
|
|
|
@ -133,7 +133,7 @@ class LazyAdam(Optimizer):
|
|||
If True, updates the gradients using NAG.
|
||||
If False, updates the gradients without using NAG. Default: False.
|
||||
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. Default:
|
||||
loss_scale (float): A floating point value for the loss scale. It should be not less than 1.0. Default:
|
||||
1.0.
|
||||
|
||||
Inputs:
|
||||
|
|
|
@ -83,8 +83,8 @@ class Momentum(Optimizer):
|
|||
or greater than 0.0.
|
||||
momentum (float): Hyperparameter of type float, means momentum for the moving average.
|
||||
It should be at least 0.0.
|
||||
weight_decay (int, float): Weight decay (L2 penalty). It should be equal to or greater than 0.0. Default: 0.0.
|
||||
loss_scale (int, float): A floating point value for the loss scale. It should be greater than 0.0. Default: 1.0.
|
||||
weight_decay (int, float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
|
||||
loss_scale (int, float): A floating point value for the loss scale. Should be not less than 1.0. Default: 1.0.
|
||||
use_nesterov (bool): Enable Nesterov momentum. Default: False.
|
||||
|
||||
Inputs:
|
||||
|
|
|
@ -79,10 +79,9 @@ class Optimizer(Cell):
|
|||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' should be in one of group parameters.
|
||||
|
||||
weight_decay (float): A floating point value for the weight decay. It should be not less than 0 and not
|
||||
greater than 1.
|
||||
weight_decay (float): A floating point value for the weight decay. It should be in range [0.0, 1.0].
|
||||
If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. It should be not less than 1. If the
|
||||
loss_scale (float): A floating point value for the loss scale. It should be not less than 1.0. If the
|
||||
type of `loss_scale` input is int, it will be converted to float. Default: 1.0.
|
||||
|
||||
Raises:
|
||||
|
@ -333,8 +332,8 @@ class Optimizer(Cell):
|
|||
|
||||
if 'weight_decay' in group_param.keys():
|
||||
validator.check_float_legal_value('weight_decay', group_param['weight_decay'], None)
|
||||
validator.check_number_range('weight_decay', group_param['weight_decay'], 0.0, float("inf"),
|
||||
Rel.INC_LEFT, self.cls_name)
|
||||
validator.check_number_range('weight_decay', group_param['weight_decay'], 0.0, 1.0,
|
||||
Rel.INC_BOTH, self.cls_name)
|
||||
weight_decay_ = group_param['weight_decay'] * self.loss_scale
|
||||
else:
|
||||
weight_decay_ = weight_decay * self.loss_scale
|
||||
|
|
|
@ -71,8 +71,8 @@ class ProximalAdagrad(Optimizer):
|
|||
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
|
||||
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
|
||||
use_locking (bool): If True use locks for update operation. Default: False.
|
||||
loss_scale (float): Value for the loss scale. It should be greater than 0.0. Default: 1.0.
|
||||
wegith_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
|
||||
loss_scale (float): Value for the loss scale. It should be not less than 1.0. Default: 1.0.
|
||||
wegith_decay (float): Weight decay value to multiply weight, should be in range [0.0, 1.0]. Default: 0.0.
|
||||
|
||||
Inputs:
|
||||
- **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
|
||||
|
|
|
@ -123,8 +123,8 @@ class RMSProp(Optimizer):
|
|||
0. Default: 1e-10.
|
||||
use_locking (bool): Enable a lock to protect the update of variable and accumlation tensors. Default: False.
|
||||
centered (bool): If True, gradients are normalized by the estimated variance of the gradient. Default: False.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. Default: 1.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). Should be equal to or greater than 0. Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be not less than 1.0. Default: 1.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). Should be in range [0.0, 1.0]. Default: 0.0.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
|
|
|
@ -76,10 +76,9 @@ class SGD(Optimizer):
|
|||
greater than 0. Default: 0.1.
|
||||
momentum (float): A floating point value the momentum. should be at least 0.0. Default: 0.0.
|
||||
dampening (float): A floating point value of dampening for momentum. should be at least 0.0. Default: 0.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
|
||||
nesterov (bool): Enables the Nesterov momentum. Default: False.
|
||||
loss_scale (float): A floating point value for the loss scale, which should be larger
|
||||
than 0.0. Default: 1.0.
|
||||
loss_scale (float): A floating point value for the loss scale. Should be not less than 1.0. Default: 1.0.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
|
|
Loading…
Reference in New Issue