From 5547c8620c0ef4e14d3c375dd8a7a9435ab6f25e Mon Sep 17 00:00:00 2001 From: zong-shuai Date: Fri, 25 Feb 2022 14:12:07 +0800 Subject: [PATCH] debug --- tests/st/ops/gpu/test_einsum_op.py | 29 ++++++++++++++--------------- 1 file changed, 14 insertions(+), 15 deletions(-) diff --git a/tests/st/ops/gpu/test_einsum_op.py b/tests/st/ops/gpu/test_einsum_op.py index a08babf453e..3db962dfdd6 100644 --- a/tests/st/ops/gpu/test_einsum_op.py +++ b/tests/st/ops/gpu/test_einsum_op.py @@ -46,7 +46,7 @@ def einsum_test_cases(nptype, loss): test_cases = [["abcd->dacb", [[2, 3, 1, 1]]], ["ijk->ik", [[1, 2, 3]]], ["ij,ij->ij", [[2, 3], [2, 3]]], - ["ij,kl->ijkl", [[1, 2], [3, 4]]], + ["ij,kl->ijkl", [[3, 2], [2, 3]]], ["ij,jk->ik", [[3, 2], [2, 3]]] ] for cur_case in test_cases: @@ -55,29 +55,17 @@ def einsum_test_cases(nptype, loss): ms_data = [] np_data = [] for cur_shape in shapes: - cur_data = np.random.randn(*cur_shape).astype(np.float64) + cur_data = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(cur_shape).astype(np.float64) ms_data.append(Tensor(cur_data.astype(nptype))) np_data.append(cur_data) net = Einsum(equation) ms_out = net(*ms_data) np_out = np.einsum(equation, *np_data) assert np.allclose(ms_out.asnumpy(), np_out.astype(nptype), loss, loss) - np_dout = np.random.randn(*np_out.shape).astype(nptype) grad_net = EinsumGrad(equation) - ms_dx = grad_net(*ms_data, Tensor(np_dout)) + ms_dx = grad_net(*ms_data, Tensor(np_out.astype(nptype))) print(ms_dx) -@pytest.mark.level0 -@pytest.mark.platform_x86_gpu_training -@pytest.mark.env_onecard -def test_einsum_graph_float32(): - """ - Feature: test transpose/ reduce_sum/dot/mul/transpose_with_ell/batchmatmul - Description: test the accuracy and precision of the preceding test cases in float32 types - Expectation: the diff between the result and the operator of np.einsum is within the loss range - """ - einsum_test_cases(np.float32, 1e-4) - @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @@ -89,6 +77,17 @@ def test_einsum_graph_float16(): """ einsum_test_cases(np.float16, 1e-3) +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_einsum_graph_float32(): + """ + Feature: test transpose/ reduce_sum/dot/mul/transpose_with_ell/batchmatmul + Description: test the accuracy and precision of the preceding test cases in float32 types + Expectation: the diff between the result and the operator of np.einsum is within the loss range + """ + einsum_test_cases(np.float32, 1e-4) + @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard