forked from mindspore-Ecosystem/mindspore
!1713 [Dataset] Clean pylint.
This commit is contained in:
parent
2aa1020d2e
commit
5522edc4b5
|
@ -124,12 +124,12 @@ def test_case_2():
|
|||
num_iter = 0
|
||||
for _ in dataset1.create_dict_iterator():
|
||||
num_iter += 1
|
||||
assert (num_iter == 5)
|
||||
assert num_iter == 5
|
||||
|
||||
num_iter = 0
|
||||
for _ in dataset2.create_dict_iterator():
|
||||
num_iter += 1
|
||||
assert (num_iter == 5)
|
||||
assert num_iter == 5
|
||||
|
||||
|
||||
def test_voc_exception():
|
||||
|
|
|
@ -14,9 +14,8 @@
|
|||
"""
|
||||
Testing FiveCrop in DE
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as vision
|
||||
|
|
|
@ -170,6 +170,7 @@ def test_subset_sampler():
|
|||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||
|
||||
def test_config(num_samples, start_index, subset_size):
|
||||
_ = num_samples
|
||||
sampler = ds.SubsetSampler(start_index, subset_size)
|
||||
d = ds.ManifestDataset(manifest_file, sampler=sampler)
|
||||
|
||||
|
|
|
@ -204,7 +204,6 @@ def test_sync_exception_03():
|
|||
Test sync: with wrong batch size
|
||||
"""
|
||||
logger.info("test_sync_exception_03")
|
||||
batch_size = 6
|
||||
|
||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||
|
||||
|
@ -223,7 +222,6 @@ def test_sync_exception_04():
|
|||
Test sync: with negative batch size in update
|
||||
"""
|
||||
logger.info("test_sync_exception_04")
|
||||
batch_size = 6
|
||||
|
||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||
|
||||
|
@ -233,7 +231,7 @@ def test_sync_exception_04():
|
|||
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
||||
count = 0
|
||||
try:
|
||||
for item in dataset.create_dict_iterator():
|
||||
for _ in dataset.create_dict_iterator():
|
||||
count += 1
|
||||
data = {"loss": count}
|
||||
# dataset.disable_sync()
|
||||
|
@ -246,7 +244,6 @@ def test_sync_exception_05():
|
|||
Test sync: with wrong batch size in update
|
||||
"""
|
||||
logger.info("test_sync_exception_05")
|
||||
batch_size = 6
|
||||
|
||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||
count = 0
|
||||
|
@ -255,7 +252,7 @@ def test_sync_exception_05():
|
|||
dataset = dataset.sync_wait(condition_name="every batch", callback=aug.update)
|
||||
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
||||
try:
|
||||
for item in dataset.create_dict_iterator():
|
||||
for _ in dataset.create_dict_iterator():
|
||||
dataset.disable_sync()
|
||||
count += 1
|
||||
data = {"loss": count}
|
||||
|
|
|
@ -17,9 +17,9 @@ Testing TenCrop in DE
|
|||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from util import visualize, save_and_check_md5
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.py_transforms as vision
|
||||
from util import visualize, save_and_check_md5
|
||||
from mindspore import log as logger
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
@ -123,7 +123,7 @@ def test_ten_crop_list_size_error_msg():
|
|||
logger.info("test_ten_crop_list_size_error_msg")
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
transforms = [
|
||||
_ = [
|
||||
vision.Decode(),
|
||||
vision.TenCrop([200, 200, 200]),
|
||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||
|
@ -139,7 +139,7 @@ def test_ten_crop_invalid_size_error_msg():
|
|||
logger.info("test_ten_crop_invalid_size_error_msg")
|
||||
|
||||
with pytest.raises(ValueError) as info:
|
||||
transforms = [
|
||||
_ = [
|
||||
vision.Decode(),
|
||||
vision.TenCrop(0),
|
||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||
|
@ -148,7 +148,7 @@ def test_ten_crop_invalid_size_error_msg():
|
|||
assert error_msg == str(info.value)
|
||||
|
||||
with pytest.raises(ValueError) as info:
|
||||
transforms = [
|
||||
_ = [
|
||||
vision.Decode(),
|
||||
vision.TenCrop(-10),
|
||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||
|
|
Loading…
Reference in New Issue