forked from mindspore-Ecosystem/mindspore
!1713 [Dataset] Clean pylint.
This commit is contained in:
parent
2aa1020d2e
commit
5522edc4b5
|
@ -124,12 +124,12 @@ def test_case_2():
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
for _ in dataset1.create_dict_iterator():
|
for _ in dataset1.create_dict_iterator():
|
||||||
num_iter += 1
|
num_iter += 1
|
||||||
assert (num_iter == 5)
|
assert num_iter == 5
|
||||||
|
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
for _ in dataset2.create_dict_iterator():
|
for _ in dataset2.create_dict_iterator():
|
||||||
num_iter += 1
|
num_iter += 1
|
||||||
assert (num_iter == 5)
|
assert num_iter == 5
|
||||||
|
|
||||||
|
|
||||||
def test_voc_exception():
|
def test_voc_exception():
|
||||||
|
|
|
@ -14,9 +14,8 @@
|
||||||
"""
|
"""
|
||||||
Testing FiveCrop in DE
|
Testing FiveCrop in DE
|
||||||
"""
|
"""
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
import pytest
|
import pytest
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
import mindspore.dataset as ds
|
import mindspore.dataset as ds
|
||||||
import mindspore.dataset.transforms.vision.py_transforms as vision
|
import mindspore.dataset.transforms.vision.py_transforms as vision
|
||||||
|
|
|
@ -272,7 +272,7 @@ def test_random_crop_and_resize_05_py():
|
||||||
expected to raise ValueError
|
expected to raise ValueError
|
||||||
"""
|
"""
|
||||||
logger.info("test_random_crop_and_resize_05_py")
|
logger.info("test_random_crop_and_resize_05_py")
|
||||||
|
|
||||||
# Generate dataset
|
# Generate dataset
|
||||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||||
try:
|
try:
|
||||||
|
|
|
@ -215,7 +215,7 @@ def test_random_horizontal_comp(plot=False):
|
||||||
image_py = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
image_py = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||||
images_list_c.append(image_c)
|
images_list_c.append(image_c)
|
||||||
images_list_py.append(image_py)
|
images_list_py.append(image_py)
|
||||||
|
|
||||||
# Check if the output images are the same
|
# Check if the output images are the same
|
||||||
mse = diff_mse(image_c, image_py)
|
mse = diff_mse(image_c, image_py)
|
||||||
assert mse < 0.001
|
assert mse < 0.001
|
||||||
|
|
|
@ -170,6 +170,7 @@ def test_subset_sampler():
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
def test_config(num_samples, start_index, subset_size):
|
def test_config(num_samples, start_index, subset_size):
|
||||||
|
_ = num_samples
|
||||||
sampler = ds.SubsetSampler(start_index, subset_size)
|
sampler = ds.SubsetSampler(start_index, subset_size)
|
||||||
d = ds.ManifestDataset(manifest_file, sampler=sampler)
|
d = ds.ManifestDataset(manifest_file, sampler=sampler)
|
||||||
|
|
||||||
|
|
|
@ -204,7 +204,6 @@ def test_sync_exception_03():
|
||||||
Test sync: with wrong batch size
|
Test sync: with wrong batch size
|
||||||
"""
|
"""
|
||||||
logger.info("test_sync_exception_03")
|
logger.info("test_sync_exception_03")
|
||||||
batch_size = 6
|
|
||||||
|
|
||||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||||
|
|
||||||
|
@ -223,7 +222,6 @@ def test_sync_exception_04():
|
||||||
Test sync: with negative batch size in update
|
Test sync: with negative batch size in update
|
||||||
"""
|
"""
|
||||||
logger.info("test_sync_exception_04")
|
logger.info("test_sync_exception_04")
|
||||||
batch_size = 6
|
|
||||||
|
|
||||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||||
|
|
||||||
|
@ -233,7 +231,7 @@ def test_sync_exception_04():
|
||||||
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
||||||
count = 0
|
count = 0
|
||||||
try:
|
try:
|
||||||
for item in dataset.create_dict_iterator():
|
for _ in dataset.create_dict_iterator():
|
||||||
count += 1
|
count += 1
|
||||||
data = {"loss": count}
|
data = {"loss": count}
|
||||||
# dataset.disable_sync()
|
# dataset.disable_sync()
|
||||||
|
@ -246,7 +244,6 @@ def test_sync_exception_05():
|
||||||
Test sync: with wrong batch size in update
|
Test sync: with wrong batch size in update
|
||||||
"""
|
"""
|
||||||
logger.info("test_sync_exception_05")
|
logger.info("test_sync_exception_05")
|
||||||
batch_size = 6
|
|
||||||
|
|
||||||
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
dataset = ds.GeneratorDataset(gen, column_names=["input"])
|
||||||
count = 0
|
count = 0
|
||||||
|
@ -255,7 +252,7 @@ def test_sync_exception_05():
|
||||||
dataset = dataset.sync_wait(condition_name="every batch", callback=aug.update)
|
dataset = dataset.sync_wait(condition_name="every batch", callback=aug.update)
|
||||||
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
dataset = dataset.map(input_columns=["input"], operations=[aug.preprocess])
|
||||||
try:
|
try:
|
||||||
for item in dataset.create_dict_iterator():
|
for _ in dataset.create_dict_iterator():
|
||||||
dataset.disable_sync()
|
dataset.disable_sync()
|
||||||
count += 1
|
count += 1
|
||||||
data = {"loss": count}
|
data = {"loss": count}
|
||||||
|
|
|
@ -17,9 +17,9 @@ Testing TenCrop in DE
|
||||||
import pytest
|
import pytest
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from util import visualize, save_and_check_md5
|
||||||
import mindspore.dataset as ds
|
import mindspore.dataset as ds
|
||||||
import mindspore.dataset.transforms.vision.py_transforms as vision
|
import mindspore.dataset.transforms.vision.py_transforms as vision
|
||||||
from util import visualize, save_and_check_md5
|
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
|
|
||||||
GENERATE_GOLDEN = False
|
GENERATE_GOLDEN = False
|
||||||
|
@ -123,7 +123,7 @@ def test_ten_crop_list_size_error_msg():
|
||||||
logger.info("test_ten_crop_list_size_error_msg")
|
logger.info("test_ten_crop_list_size_error_msg")
|
||||||
|
|
||||||
with pytest.raises(TypeError) as info:
|
with pytest.raises(TypeError) as info:
|
||||||
transforms = [
|
_ = [
|
||||||
vision.Decode(),
|
vision.Decode(),
|
||||||
vision.TenCrop([200, 200, 200]),
|
vision.TenCrop([200, 200, 200]),
|
||||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||||
|
@ -139,7 +139,7 @@ def test_ten_crop_invalid_size_error_msg():
|
||||||
logger.info("test_ten_crop_invalid_size_error_msg")
|
logger.info("test_ten_crop_invalid_size_error_msg")
|
||||||
|
|
||||||
with pytest.raises(ValueError) as info:
|
with pytest.raises(ValueError) as info:
|
||||||
transforms = [
|
_ = [
|
||||||
vision.Decode(),
|
vision.Decode(),
|
||||||
vision.TenCrop(0),
|
vision.TenCrop(0),
|
||||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||||
|
@ -148,7 +148,7 @@ def test_ten_crop_invalid_size_error_msg():
|
||||||
assert error_msg == str(info.value)
|
assert error_msg == str(info.value)
|
||||||
|
|
||||||
with pytest.raises(ValueError) as info:
|
with pytest.raises(ValueError) as info:
|
||||||
transforms = [
|
_ = [
|
||||||
vision.Decode(),
|
vision.Decode(),
|
||||||
vision.TenCrop(-10),
|
vision.TenCrop(-10),
|
||||||
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
||||||
|
|
Loading…
Reference in New Issue