forked from mindspore-Ecosystem/mindspore
[feat] [assistant] [I40GGH] add new ascend operator Cummin
This commit is contained in:
parent
50f4f96c77
commit
5485ff0cb6
|
@ -173,6 +173,7 @@ inline const PrimitivePtr kPrimStackPop = std::make_shared<Primitive>("StackPop"
|
|||
|
||||
// Arrays
|
||||
inline const PrimitivePtr kPrimDynamicBroadcastTo = std::make_shared<Primitive>(kDynamicBroadcastTo);
|
||||
inline const PrimitivePtr kPrimCummin = std::make_shared<Primitive>("Cummin");
|
||||
inline const PrimitivePtr kPrimBroadcastTo = std::make_shared<Primitive>("BroadcastTo");
|
||||
inline const PrimitivePtr kPrimScalarToArray = std::make_shared<Primitive>("scalar_to_array");
|
||||
inline const PrimitivePtr kPrimTopK = std::make_shared<Primitive>("TopK");
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "ops/cummin.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::TupleShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto y_shape = CheckAndConvertUtils::GetTensorInputShape(prim_name, input_args, 0);
|
||||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
auto y_rank = x_shape.size();
|
||||
const int64_t min_dim = 0;
|
||||
(void)CheckAndConvertUtils::CheckInteger("the rank of input", SizeToLong(x_shape.size()), kGreaterThan, min_dim,
|
||||
prim_name);
|
||||
int64_t axis = GetValue<int64_t>(primitive->GetAttr("axis"));
|
||||
CheckAndConvertUtils::CheckInRange<int64_t>("axis", axis, kIncludeBoth, {-y_rank, y_rank - 1}, prim_name);
|
||||
return std::make_shared<abstract::TupleShape>(std::vector<abstract::BaseShapePtr>{y_shape, y_shape});
|
||||
}
|
||||
|
||||
TuplePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto prim_name = prim->name();
|
||||
MS_EXCEPTION_IF_NULL(input_args[0]);
|
||||
const std::set<TypePtr> valid_types = {kFloat32, kFloat16, kInt32, kInt8, kUInt8};
|
||||
auto x_type = input_args[0]->BuildType();
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("input_x", x_type, valid_types, prim_name);
|
||||
TypePtr argmin_type = kInt32;
|
||||
return std::make_shared<Tuple>(std::vector{x_type, argmin_type});
|
||||
}
|
||||
} // namespace
|
||||
|
||||
AbstractBasePtr CumminInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto prim_name = primitive->name();
|
||||
(void)CheckAndConvertUtils::CheckInteger("input numbers", input_args.size(), kEqual, 1, prim_name);
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto type = InferType(primitive, input_args);
|
||||
auto shape = InferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(shape, type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(Cummin, prim::kPrimCummin, CumminInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,44 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_CUMMIN_H_
|
||||
#define MINDSPORE_CORE_OPS_CUMMIN_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "ops/primitive_c.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameCummin = "kCummin";
|
||||
class Cummin : public PrimitiveC {
|
||||
public:
|
||||
Cummin() : PrimitiveC(kNameCummin) { InitIOName({"x"}, {"y"}); }
|
||||
~Cummin() = default;
|
||||
MS_DECLARE_PARENT(Cummin, PrimitiveC);
|
||||
};
|
||||
|
||||
AbstractBasePtr CumminInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimCumminPtr = std::shared_ptr<Cummin>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CORE_OPS_CUMMIN_H_
|
|
@ -15,6 +15,7 @@
|
|||
|
||||
"""tbe ops"""
|
||||
from .celu import _celu_tbe
|
||||
from .cummin import _cummin_tbe
|
||||
from .abs import _abs_tbe
|
||||
from .abs_ds import _abs_ds_tbe
|
||||
from .inplace_add import _inplace_add_tbe
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Cummin op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
celu_op_info = TBERegOp("Cummin") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("cummin.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("cummin") \
|
||||
.partial_flag(True) \
|
||||
.attr("axis", "required", "int", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.output(0, "argmin", False, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.I32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(celu_op_info)
|
||||
def _cummin_tbe():
|
||||
"""Cummin TBE register"""
|
||||
return
|
|
@ -27,7 +27,7 @@ from .multitype_ops.add_impl import hyper_add
|
|||
from .multitype_ops.ones_like_impl import ones_like
|
||||
from .multitype_ops.zeros_like_impl import zeros_like
|
||||
from .random_ops import normal, laplace, uniform, gamma, poisson, multinomial
|
||||
from .math_ops import count_nonzero, tensor_dot, dot, batch_dot, matmul
|
||||
from .math_ops import count_nonzero, tensor_dot, dot, batch_dot, matmul, cummin
|
||||
from .array_ops import repeat_elements, sequence_mask
|
||||
|
||||
|
||||
|
@ -53,6 +53,7 @@ __all__ = [
|
|||
'clip_by_value',
|
||||
'clip_by_global_norm',
|
||||
'count_nonzero',
|
||||
'cummin',
|
||||
'tensor_dot',
|
||||
'dot',
|
||||
'batch_dot',
|
||||
|
|
|
@ -19,12 +19,11 @@ import numpy as np
|
|||
from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.ops import functional as F
|
||||
from .. import operations as P
|
||||
|
||||
# count_nonzero
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_validate_axis(axis, name):
|
||||
|
@ -104,8 +103,6 @@ def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32):
|
|||
|
||||
return nonzero_num
|
||||
|
||||
# tensor dot
|
||||
|
||||
|
||||
@constexpr
|
||||
def _int_to_tuple_conv(axes):
|
||||
|
@ -207,7 +204,7 @@ def _validate_axes(x1_shape, x2_shape, axes, prim_name=None):
|
|||
for i in range(len(axes[0])): # sizes already validated
|
||||
if x1_shape[axes[0][i]] != x2_shape[axes[1][i]]:
|
||||
invalid_a = True
|
||||
if x1_shape[axes[0][i]] != x2_shape[axes[1][len(axes[0])-1-i]]:
|
||||
if x1_shape[axes[0][i]] != x2_shape[axes[1][len(axes[0]) - 1 - i]]:
|
||||
invalid_b = True
|
||||
if invalid_a and invalid_b:
|
||||
raise ValueError(f"{msg_prefix} 'i' should exist such that 'x1_shape[axes[0][i]]' is equal to "
|
||||
|
@ -836,3 +833,71 @@ def matmul(x1, x2, dtype=None):
|
|||
if dtype is not None:
|
||||
res = res.astype(dtype)
|
||||
return F.reshape(res, shape_out)
|
||||
|
||||
|
||||
@constexpr
|
||||
def _create_cummin_perm(axis, x_shape):
|
||||
"""Insure axis is in [-len(x_shape),len(s_shape)-1]"""
|
||||
len_axis = len(x_shape)
|
||||
if not isinstance(axis, int):
|
||||
raise TypeError(f"The date type of 'axis' should be Int, but got {axis}.")
|
||||
if axis < -len_axis or axis > len_axis:
|
||||
raise ValueError(f"The value of axis should be in [{-len_axis}, {len_axis}], but got {axis}.")
|
||||
prem = [i for i in range(len_axis)]
|
||||
if axis < 0:
|
||||
axis = axis + len_axis
|
||||
prem[0], prem[axis] = axis, 0
|
||||
prem = tuple(prem)
|
||||
return prem
|
||||
|
||||
|
||||
def cummin(x, axis):
|
||||
r"""
|
||||
Computation of the cumulative minimum of elements of 'x' in the dimension axis,
|
||||
and the index location of each maximum value found in the dimension 'axis'.
|
||||
|
||||
It returns the cumulative minimum of elements and the index.
|
||||
|
||||
..math::
|
||||
|
||||
y{i} = min(x{1}, x{2}, ... , x{i})
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor, rank of `input_x` > 0.
|
||||
axis (Int): The dimension to do the operation, The axis is in the range from -len(`input_x`.shape)
|
||||
to len(`input_x`.shape) - 1. When it's in the range from 0 to len(`input_x`.shape) - 1, it means starting
|
||||
from the first dimension and counting forwards, When it's less than 0, it means we're counting backwards
|
||||
from the last dimension. for example, -1 means the last dimension.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - The output tensor of the cumulative minimum of elements.
|
||||
- **indices** (Tensor) - The result tensor of the index of each minimum value been found.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If 'axis' is not a int.
|
||||
ValueError:If 'axis' is out the range of [-len(`input_x`.shape) to len(`input_x`.shape) - 1]
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220], mindspore.float32)
|
||||
>>> output = ops.cummin(a, axis=0)
|
||||
>>> print(output[0])
|
||||
[-0.2284 -0.6628 -0.6628 -0.6628 -1.3298 -1.3298]
|
||||
>>> print(output[1])
|
||||
[0 1 1 1 4 4]
|
||||
"""
|
||||
cummin_op = inner.Cummin(axis=0)
|
||||
if axis == 0:
|
||||
out1, out2 = cummin_op(x)
|
||||
else:
|
||||
transpose = P.Transpose()
|
||||
x_shape = P.Shape()(x)
|
||||
prem = _create_cummin_perm(axis, x_shape)
|
||||
x = transpose(x, prem)
|
||||
out1, out2 = cummin_op(x)
|
||||
out1 = transpose(out1, prem)
|
||||
out2 = transpose(out2, prem)
|
||||
return [out1, out2]
|
||||
|
|
|
@ -59,7 +59,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy,
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod,
|
||||
Square, Sub, TensorAdd, Add, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan,
|
||||
MatrixInverse, IndexAdd, Erfinv, Conj, Real, Imag, Complex, Trunc,)
|
||||
MatrixInverse, IndexAdd, Erfinv, Conj, Real, Imag, Complex, Trunc)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
RandomCategorical, StandardLaplace, Multinomial, UniformCandidateSampler,
|
||||
|
|
|
@ -1429,3 +1429,49 @@ class DynamicBroadcastTo(Primitive):
|
|||
def __init__(self):
|
||||
"""Initialize DynamicBroadcastTo"""
|
||||
self.init_prim_io_names(inputs=['x', 'shape'], outputs=['y'])
|
||||
|
||||
|
||||
class Cummin(Primitive):
|
||||
r"""
|
||||
Computation of the cumulative minimum of elements of 'input' in the dimension dim,
|
||||
and the index location of each maximum value found in the dimension 'dim'.
|
||||
|
||||
It returns the cumulative minimum of elements and the index.
|
||||
|
||||
..math::
|
||||
|
||||
y{i} = min(x{1}, x{2}, ... , x{i})
|
||||
|
||||
Args:
|
||||
- **axis** (int) - The dimension to do the operation, The axis is in the range from -len(`input_x`.shape)
|
||||
to len(`input_x`.shape) - 1. When it's in the range from 0 to len(`input_x`.shape) - 1, it means starting
|
||||
from the first dimension and counting forwards, When it's less than 0, it means we're counting backwards
|
||||
from the last dimension. for example, -1 means the last dimension.
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor, rank of `input_x` > 0.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - The output tensor of the cumulative minimum of elements.
|
||||
- **indices** (Tensor) - The result tensor of the index of each minimum value been found.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If 'axis' is not a int.
|
||||
ValueError:If 'axis' is out the range from -len(`input_x`.shape) to len(`input_x`.shape) - 1
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220], mindspore.float32)
|
||||
>>> output = ops.cummin(a, axis=0)
|
||||
>>> print(output[0])
|
||||
[-0.2284 -0.6628 -0.6628 -0.6628 -1.3298 -1.3298]
|
||||
>>> print(output[1])
|
||||
[0 1 1 1 4 4]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, axis):
|
||||
"""Initialize Cummin"""
|
||||
validator.check_value_type('axis', axis, [int], self.name)
|
||||
|
|
|
@ -2180,6 +2180,10 @@ test_case_nn_ops = [
|
|||
'desc_const': [0],
|
||||
'desc_inputs': [[3, 2]],
|
||||
'desc_bprop': [[3, 2]]}),
|
||||
('Cummin', {
|
||||
'block': inner.Cummin(axis=0),
|
||||
'desc_inputs': [[1, 3, 3, 3]],
|
||||
'skip': ['backward']}),
|
||||
('ApplyFtrl', {
|
||||
'block': ApplyFtrlNet(),
|
||||
'desc_inputs': [[3, 3]],
|
||||
|
|
Loading…
Reference in New Issue