forked from mindspore-Ecosystem/mindspore
!14908 fix codex warnings related to GPU kernels
From: @TFbunny Reviewed-by: @robingrosman,@liangchenghui Signed-off-by: @liangchenghui
This commit is contained in:
commit
5447d85f87
|
@ -18,69 +18,54 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat64),
|
||||
GatherV2GpuFwdKernel, double, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat64),
|
||||
GatherV2GpuFwdKernel, double, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
GatherV2GpuFwdKernel, int, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
GatherV2GpuFwdKernel, int, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt16),
|
||||
GatherV2GpuFwdKernel, int16_t, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt16),
|
||||
GatherV2GpuFwdKernel, int16_t, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt8),
|
||||
GatherV2GpuFwdKernel, int8_t, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt8),
|
||||
GatherV2GpuFwdKernel, int8_t, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeUInt8),
|
||||
GatherV2GpuFwdKernel, uint8_t, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Gather, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeUInt8),
|
||||
GatherV2GpuFwdKernel, uint8_t, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
@ -88,7 +73,6 @@ MS_REG_GPU_KERNEL_TWO(Gather,
|
|||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
@ -96,7 +80,6 @@ MS_REG_GPU_KERNEL_TWO(Gather,
|
|||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
|
@ -104,7 +87,6 @@ MS_REG_GPU_KERNEL_TWO(Gather,
|
|||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(Gather,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
|
@ -112,17 +94,14 @@ MS_REG_GPU_KERNEL_TWO(Gather,
|
|||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int64_t)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
SparseGatherV2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
SparseGatherV2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(SparseGatherV2,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
|
@ -130,7 +109,6 @@ MS_REG_GPU_KERNEL_TWO(SparseGatherV2,
|
|||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(SparseGatherV2,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -207,14 +207,8 @@ class GpuKernel : public KernelMod {
|
|||
MS_EXCEPTION(ValueError) << "cudnnSetTensorNdDescriptor don't support" << shape.size() << "D.";
|
||||
}
|
||||
const int nbDims = shape.size();
|
||||
int *dim = new (std::nothrow) int[nbDims];
|
||||
if (dim == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "malloc dim failed.";
|
||||
}
|
||||
int *stride = new (std::nothrow) int[nbDims];
|
||||
if (stride == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "malloc stride failed.";
|
||||
}
|
||||
std::unique_ptr<int[]> dim = std::make_unique<int[]>(nbDims);
|
||||
std::unique_ptr<int[]> stride = std::make_unique<int[]>(nbDims);
|
||||
|
||||
for (int i = 0; i < nbDims; i++) {
|
||||
dim[i] = SizeToInt(shape[i]);
|
||||
|
@ -225,13 +219,9 @@ class GpuKernel : public KernelMod {
|
|||
stride[i] = stride[i + 1] * SizeToInt(shape[i + 1]);
|
||||
}
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(node, cudnnSetTensorNdDescriptor(descriptor, data_type, nbDims, dim, stride),
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(node,
|
||||
cudnnSetTensorNdDescriptor(descriptor, data_type, nbDims, dim.get(), stride.get()),
|
||||
"cudnnSetTensorNdDescriptor failed");
|
||||
|
||||
delete[] dim;
|
||||
dim = nullptr;
|
||||
delete[] stride;
|
||||
stride = nullptr;
|
||||
}
|
||||
|
||||
// choose the suitable datatype for cudnn/cublas
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -23,18 +23,15 @@ MS_REG_GPU_KERNEL_ONE(
|
|||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
SquaredDifferenceOpGpuKernel, float)
|
||||
|
||||
// fp16
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
SquaredDifferenceOpGpuKernel, half)
|
||||
|
||||
// int32
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
SquaredDifferenceOpGpuKernel, int)
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -79,7 +79,7 @@ class PoolingGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
bool InitShape(const CNodePtr &kernel_node, int *dimA, int *strideAin, int *dimAy, int *strideAiny, int *dimAdy,
|
||||
int *strideAdy, int *dimAout, int *strideAout) {
|
||||
int *strideAdy, int *dimAout, int *strideAout, int nbDims) {
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
auto input_mask = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
auto dout_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 2);
|
||||
|
@ -98,14 +98,14 @@ class PoolingGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
CHECK_TENSOR_SIZE(input_shape);
|
||||
SetNCHW(input_shape, &n_, &c_, &old_height_, &old_width_, data_format);
|
||||
SetDimA(input_shape, dimA, 4, data_format);
|
||||
SetStrideA(input_shape, strideAin, 4, data_format);
|
||||
SetDimA(input_mask, dimAy, 4, data_format);
|
||||
SetStrideA(input_mask, strideAiny, 4, data_format);
|
||||
SetDimA(dout_shape, dimAdy, 4, data_format);
|
||||
SetStrideA(dout_shape, strideAdy, 4, data_format);
|
||||
SetDimA(output_shape, dimAout, 4, data_format);
|
||||
SetStrideA(output_shape, strideAout, 4, data_format);
|
||||
SetDimA(input_shape, dimA, nbDims, data_format);
|
||||
SetStrideA(input_shape, strideAin, nbDims, data_format);
|
||||
SetDimA(input_mask, dimAy, nbDims, data_format);
|
||||
SetStrideA(input_mask, strideAiny, nbDims, data_format);
|
||||
SetDimA(dout_shape, dimAdy, nbDims, data_format);
|
||||
SetStrideA(dout_shape, strideAdy, nbDims, data_format);
|
||||
SetDimA(output_shape, dimAout, nbDims, data_format);
|
||||
SetStrideA(output_shape, strideAout, nbDims, data_format);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -124,7 +124,7 @@ class PoolingGradGpuKernel : public GpuKernel {
|
|||
int strideAdy[4];
|
||||
int dimAout[4];
|
||||
int strideAout[4];
|
||||
if (!InitShape(kernel_node, dimA, strideAin, dimAy, strideAiny, dimAdy, strideAdy, dimAout, strideAout)) {
|
||||
if (!InitShape(kernel_node, dimA, strideAin, dimAy, strideAiny, dimAdy, strideAdy, dimAout, strideAout, nbDims)) {
|
||||
return true;
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_,
|
||||
|
|
Loading…
Reference in New Issue