!12777 fix ci pynative case

From: @jojobugfree
Reviewed-by: @chujinjin,@jjfeing
Signed-off-by: @chujinjin
This commit is contained in:
mindspore-ci-bot 2021-03-04 10:08:17 +08:00 committed by Gitee
commit 541643e16b
1 changed files with 49 additions and 28 deletions

View File

@ -32,7 +32,36 @@ from mindspore.nn import Cell
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import composite as CP from mindspore.ops import composite as CP
from mindspore.nn.optim.momentum import Momentum from mindspore.nn.optim.momentum import Momentum
from mindspore.nn.wrap.cell_wrapper import WithLossCell from mindspore.train.callback import LossMonitor, Callback
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.model import Model
class MyTimeMonitor(Callback):
def __init__(self, data_size):
super(MyTimeMonitor, self).__init__()
self.data_size = data_size
self.total = 0
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_msseconds = (time.time()-self.epoch_time) * 1000
per_step_mssconds = epoch_msseconds / self.data_size
print("epoch time:{0}, per step time:{1}".format(epoch_msseconds, per_step_mssconds), flush=True)
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
step_msseconds = (time.time() - self.step_time) * 1000
if step_msseconds < 265:
self.total = self.total + 1
print(f"step time:{step_msseconds}", flush=True)
def good_step(self):
return self.total
random.seed(1) random.seed(1)
np.random.seed(1) np.random.seed(1)
@ -303,12 +332,12 @@ def resnet50(batch_size, num_classes):
return ResNet(ResidualBlock, num_classes, batch_size) return ResNet(ResidualBlock, num_classes, batch_size)
def create_dataset(repeat_num=1, training=True, batch_size=32): def create_dataset(repeat_num=1, training=True, batch_size=32, num_samples=1600):
data_home = "/home/workspace/mindspore_dataset" data_home = "/home/workspace/mindspore_dataset"
data_dir = data_home + "/cifar-10-batches-bin" data_dir = data_home + "/cifar-10-batches-bin"
if not training: if not training:
data_dir = data_home + "/cifar-10-verify-bin" data_dir = data_home + "/cifar-10-verify-bin"
data_set = ds.Cifar10Dataset(data_dir) data_set = ds.Cifar10Dataset(data_dir, num_samples=num_samples)
resize_height = 224 resize_height = 224
resize_width = 224 resize_width = 224
@ -385,33 +414,25 @@ def test_pynative_resnet50():
batch_size = 32 batch_size = 32
num_classes = 10 num_classes = 10
loss_scale = 128
total_step = 50
net = resnet50(batch_size, num_classes) net = resnet50(batch_size, num_classes)
criterion = CrossEntropyLoss()
optimizer = Momentum(learning_rate=0.01, momentum=0.9, optimizer = Momentum(learning_rate=0.01, momentum=0.9,
params=filter(lambda x: x.requires_grad, net.get_parameters())) params=filter(lambda x: x.requires_grad, net.get_parameters()))
data_set = create_dataset(repeat_num=1, training=True, batch_size=batch_size, num_samples=total_step * batch_size)
net_with_criterion = WithLossCell(net, criterion) # define callbacks
net_with_criterion.set_grad() time_cb = MyTimeMonitor(data_size=data_set.get_dataset_size())
train_network = GradWrap(net_with_criterion) loss_cb = LossMonitor()
train_network.set_train() cb = [time_cb, loss_cb]
step = 0 loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
max_step = 21 loss_scale = FixedLossScaleManager(loss_scale=loss_scale, drop_overflow_update=False)
exceed_num = 0 model = Model(net, loss_fn=loss, optimizer=optimizer, loss_scale_manager=loss_scale, metrics={'acc'},
data_set = create_dataset(repeat_num=1, training=True, batch_size=batch_size) amp_level="O2", keep_batchnorm_fp32=False)
for element in data_set.create_dict_iterator(num_epochs=1):
step = step + 1 # train model
if step > max_step: model.train(1, data_set, callbacks=cb,
break sink_size=data_set.get_dataset_size(), dataset_sink_mode=True)
start_time = time.time()
input_data = element["image"] assert time_cb.good_step() > 10
input_label = element["label"]
loss_output = net_with_criterion(input_data, input_label)
grads = train_network(input_data, input_label)
optimizer(grads)
end_time = time.time()
cost_time = end_time - start_time
print("======step: ", step, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
if step > 1 and cost_time > 0.25:
exceed_num = exceed_num + 1
assert exceed_num < 20