[feat][assistant][I3CEGG] add new data OP FrequencyMasking

This commit is contained in:
chenx2ovo 2021-08-12 15:28:30 +08:00
parent efbbca45d5
commit 53615010a3
19 changed files with 604 additions and 58 deletions

View File

@ -23,6 +23,7 @@
#include "minddata/dataset/audio/ir/kernels/bandpass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/bandreject_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/bass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/frequency_masking_ir.h"
#include "minddata/dataset/audio/ir/kernels/time_masking_ir.h"
#include "minddata/dataset/audio/ir/kernels/time_stretch_ir.h"
@ -135,6 +136,27 @@ std::shared_ptr<TensorOperation> BassBiquad::Parse() {
return std::make_shared<BassBiquadOperation>(data_->sample_rate_, data_->gain_, data_->central_freq_, data_->Q_);
}
// FrequencyMasking Transform Operation.
struct FrequencyMasking::Data {
Data(bool iid_masks, int32_t frequency_mask_param, int32_t mask_start, double mask_value)
: iid_masks_(iid_masks),
frequency_mask_param_(frequency_mask_param),
mask_start_(mask_start),
mask_value_(mask_value) {}
int32_t frequency_mask_param_;
int32_t mask_start_;
bool iid_masks_;
double mask_value_;
};
FrequencyMasking::FrequencyMasking(bool iid_masks, int32_t frequency_mask_param, int32_t mask_start, double mask_value)
: data_(std::make_shared<Data>(iid_masks, frequency_mask_param, mask_start, mask_value)) {}
std::shared_ptr<TensorOperation> FrequencyMasking::Parse() {
return std::make_shared<FrequencyMaskingOperation>(data_->iid_masks_, data_->frequency_mask_param_,
data_->mask_start_, data_->mask_value_);
}
// TimeMasking Transform Operation.
struct TimeMasking::Data {
Data(bool iid_masks, int64_t time_mask_param, int64_t mask_start, double mask_value)

View File

@ -24,6 +24,7 @@
#include "minddata/dataset/audio/ir/kernels/bandpass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/bandreject_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/bass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/frequency_masking_ir.h"
#include "minddata/dataset/audio/ir/kernels/time_masking_ir.h"
#include "minddata/dataset/audio/ir/kernels/time_stretch_ir.h"
#include "minddata/dataset/include/dataset/transforms.h"
@ -115,6 +116,19 @@ PYBIND_REGISTER(
}));
}));
PYBIND_REGISTER(
FrequencyMaskingOperation, 1, ([](const py::module *m) {
(void)
py::class_<audio::FrequencyMaskingOperation, TensorOperation, std::shared_ptr<audio::FrequencyMaskingOperation>>(
*m, "FrequencyMaskingOperation")
.def(py::init([](bool iid_masks, int32_t frequency_mask_param, int32_t mask_start, double mask_value) {
auto frequency_masking =
std::make_shared<audio::FrequencyMaskingOperation>(iid_masks, frequency_mask_param, mask_start, mask_value);
THROW_IF_ERROR(frequency_masking->ValidateParams());
return frequency_masking;
}));
}));
PYBIND_REGISTER(
TimeMaskingOperation, 1, ([](const py::module *m) {
(void)py::class_<audio::TimeMaskingOperation, TensorOperation, std::shared_ptr<audio::TimeMaskingOperation>>(

View File

@ -9,6 +9,7 @@ add_library(audio-ir-kernels OBJECT
bandpass_biquad_ir.cc
bandreject_biquad_ir.cc
bass_biquad_ir.cc
frequency_masking_ir.cc
time_masking_ir.cc
time_stretch_ir.cc
)

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/audio/ir/kernels/frequency_masking_ir.h"
#include "minddata/dataset/audio/kernels/frequency_masking_op.h"
#include "minddata/dataset/audio/ir/validators.h"
namespace mindspore {
namespace dataset {
namespace audio {
FrequencyMaskingOperation::FrequencyMaskingOperation(bool iid_masks, int32_t frequency_mask_param, int32_t mask_start,
double mask_value)
: iid_masks_(iid_masks),
frequency_mask_param_(frequency_mask_param),
mask_start_(mask_start),
mask_value_(mask_value) {}
FrequencyMaskingOperation::~FrequencyMaskingOperation() = default;
Status FrequencyMaskingOperation::ValidateParams() {
RETURN_IF_NOT_OK(CheckIntScalarNonNegative("FrequencyMasking", "frequency_mask_param", frequency_mask_param_));
RETURN_IF_NOT_OK(CheckIntScalarNonNegative("FrequencyMasking", "mask_start", mask_start_));
return Status::OK();
}
std::shared_ptr<TensorOp> FrequencyMaskingOperation::Build() {
std::shared_ptr<FrequencyMaskingOp> tensor_op =
std::make_shared<FrequencyMaskingOp>(iid_masks_, frequency_mask_param_, mask_start_, mask_value_);
return tensor_op;
}
std::string FrequencyMaskingOperation::Name() const { return kFrequencyMaskingOperation; }
Status FrequencyMaskingOperation::to_json(nlohmann::json *out_json) {
nlohmann::json args;
args["frequency_mask_param"] = frequency_mask_param_;
args["mask_start"] = mask_start_;
args["iid_masks"] = iid_masks_;
args["mask_value"] = mask_value_;
*out_json = args;
return Status::OK();
}
} // namespace audio
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,56 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_FREQUENCY_MASKING_IR_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_FREQUENCY_MASKING_IR_H_
#include <memory>
#include <string>
#include <vector>
#include "include/api/status.h"
#include "minddata/dataset/kernels/ir/tensor_operation.h"
namespace mindspore {
namespace dataset {
namespace audio {
constexpr char kFrequencyMaskingOperation[] = "FrequencyMasking";
class FrequencyMaskingOperation : public TensorOperation {
public:
FrequencyMaskingOperation(bool iid_masks, int32_t frequency_mask_param, int32_t mask_start, double mask_value);
~FrequencyMaskingOperation();
std::shared_ptr<TensorOp> Build() override;
Status ValidateParams() override;
std::string Name() const override;
Status to_json(nlohmann::json *out_json) override;
private:
int32_t frequency_mask_param_;
int32_t mask_start_;
bool iid_masks_;
double mask_value_;
}; // class FrequencyMaskingOperation
} // namespace audio
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_FREQUENCY_MASKING_IR_H_

View File

@ -10,6 +10,7 @@ add_library(audio-kernels OBJECT
bandpass_biquad_op.cc
bandreject_biquad_op.cc
bass_biquad_op.cc
frequency_masking_op.cc
time_masking_op.cc
time_stretch_op.cc
)

View File

@ -399,8 +399,7 @@ Status RandomMaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr
Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int64_t mask_width,
int64_t mask_start, double mask_value, int axis) {
if (axis != 2 && axis != 1) {
RETURN_STATUS_UNEXPECTED(
"MaskAlongAxis: only support Time and Frequency masking, the axis should be equal to 1 or 2.");
RETURN_STATUS_UNEXPECTED("MaskAlongAxis: only support Time and Frequency masking, axis should be 1 or 2.");
}
TensorShape input_shape = input->shape();
// squeeze input
@ -409,9 +408,9 @@ Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tenso
int check_dim_ind = (axis == 1) ? -2 : -1;
CHECK_FAIL_RETURN_UNEXPECTED(0 <= mask_start && mask_start <= input_shape[check_dim_ind],
"MaskAlongAxis: mask_start should be smaller than the length of chosen dim.");
"MaskAlongAxis: mask_start should be less than the length of chosen dimension.");
CHECK_FAIL_RETURN_UNEXPECTED(mask_start + mask_width <= input_shape[check_dim_ind],
"MaskAlongAxis: mask_width with mask_start is out of bounds.");
"MaskAlongAxis: the sum of mask_start and mask_width is out of bounds.");
int64_t cell_size = input->type().SizeInBytes();

View File

@ -208,7 +208,6 @@ Status RandomMaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr
/// \return Status code
Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int64_t mask_width,
int64_t mask_start, double mask_value, int axis);
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_AUDIO_UTILS_H_

View File

@ -0,0 +1,66 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/audio/kernels/frequency_masking_op.h"
#include "minddata/dataset/audio/kernels/audio_utils.h"
#include "minddata/dataset/kernels/data/data_utils.h"
#include "minddata/dataset/util/random.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
// constructor
FrequencyMaskingOp::FrequencyMaskingOp(bool iid_masks, int32_t frequency_mask_param, int32_t mask_start,
double mask_value)
: frequency_mask_param_(frequency_mask_param),
mask_start_(mask_start),
iid_masks_(iid_masks),
mask_value_(mask_value) {
rnd_.seed(GetSeed());
}
// main function
Status FrequencyMaskingOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
// input <..., freq, time>
CHECK_FAIL_RETURN_UNEXPECTED(input->Rank() >= 2,
"FrequencyMasking: input tensor is not in shape of <..., freq, time>.");
TensorShape input_shape = input->shape();
CHECK_FAIL_RETURN_UNEXPECTED(
input_shape[-2] >= frequency_mask_param_,
"FrequencyMasking: frequency_mask_param should be less than the length of frequency dimension.");
std::shared_ptr<Tensor> input_tensor;
// typecast
CHECK_FAIL_RETURN_UNEXPECTED(input->type() != DataType::DE_STRING,
"FrequencyMasking: input tensor type should be float, but got string.");
if (input->type() != DataType::DE_FLOAT64) {
RETURN_IF_NOT_OK(TypeCast(input, &input_tensor, DataType(DataType::DE_FLOAT32)));
} else {
input_tensor = input;
}
auto mask_val =
input->type() != DataType::DE_FLOAT64 ? static_cast<float>(mask_value_) : static_cast<double>(mask_value_);
// iid_masks - whether to apply different masks to each example/channel.
if (iid_masks_ == false) {
return MaskAlongAxis(input_tensor, output, frequency_mask_param_, mask_start_, mask_val, 1);
} else {
return RandomMaskAlongAxis(input_tensor, output, frequency_mask_param_, mask_val, 1, rnd_);
}
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,52 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_FREQUENCY_MASKING_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_FREQUENCY_MASKING_OP_H_
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
class FrequencyMaskingOp : public TensorOp {
public:
explicit FrequencyMaskingOp(bool iid_masks = false, int32_t frequency_mask_param = 0, int32_t mask_start = 0,
double mask_value_ = 0.0);
~FrequencyMaskingOp() override = default;
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
std::string Name() const override { return kFrequencyMaskingOp; }
private:
bool iid_masks_;
int32_t frequency_mask_param_;
int32_t mask_start_;
double mask_value_;
std::mt19937 rnd_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_FREQUENCY_MASKING_OP_H_

View File

@ -36,7 +36,7 @@ Status TimeMaskingOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_
CHECK_FAIL_RETURN_UNEXPECTED(input->Rank() >= 2, "TimeMasking: input dimension must be greater than 2.");
TensorShape input_shape = input->shape();
CHECK_FAIL_RETURN_UNEXPECTED(input_shape[-1] >= time_mask_param_,
"TimeMasking: input time_mask_param should be smaller than the length of time dim.");
"TimeMasking: time_mask_param should be less than the length of time dimension.");
std::shared_ptr<Tensor> input_tensor;
// typecast

View File

@ -187,19 +187,22 @@ class BassBiquad final : public TensorTransform {
std::shared_ptr<Data> data_;
};
/// \brief TimeStretch TensorTransform
/// \notes Stretch STFT in time at a given rate, without changing the pitch.
class TimeStretch final : public TensorTransform {
/// \brief FrequencyMasking TensorTransform.
/// \notes Apply masking to a spectrogram in the frequency domain.
class FrequencyMasking final : public TensorTransform {
public:
/// \brief Constructor.
/// \param[in] hop_length Length of hop between STFT windows. Default: None.
/// \param[in] n_freq Number of filter banks form STFT. Default: 201.
/// \param[in] fixed_rate Rate to speed up or slow down the input in time. Default: None.
explicit TimeStretch(float hop_length = std::numeric_limits<float>::quiet_NaN(), int n_freq = 201,
float fixed_rate = std::numeric_limits<float>::quiet_NaN());
/// \param[in] iid_masks Whether to apply different masks to each example.
/// \param[in] frequency_mask_param Maximum possible length of the mask.
/// Indices uniformly sampled from [0, frequency_mask_param].
/// Mask width when iid_masks=true.
/// \param[in] mask_start Mask start when iid_masks=true.
/// \param[in] mask_value Mask value.
explicit FrequencyMasking(bool iid_masks = false, int32_t frequency_mask_param = 0, int32_t mask_start = 0,
double mask_value = 0.0);
/// \brief Destructor.
~TimeStretch() = default;
~FrequencyMasking() = default;
protected:
/// \brief Function to convert TensorTransform object into a TensorOperation object.
@ -237,6 +240,30 @@ class TimeMasking final : public TensorTransform {
struct Data;
std::shared_ptr<Data> data_;
};
/// \brief TimeStretch TensorTransform
/// \notes Stretch STFT in time at a given rate, without changing the pitch.
class TimeStretch final : public TensorTransform {
public:
/// \brief Constructor.
/// \param[in] hop_length Length of hop between STFT windows. Default: None.
/// \param[in] n_freq Number of filter banks form STFT. Default: 201.
/// \param[in] fixed_rate Rate to speed up or slow down the input in time. Default: None.
explicit TimeStretch(float hop_length = std::numeric_limits<float>::quiet_NaN(), int n_freq = 201,
float fixed_rate = std::numeric_limits<float>::quiet_NaN());
/// \brief Destructor.
~TimeStretch() = default;
protected:
/// \brief Function to convert TensorTransform object into a TensorOperation object.
/// \return Shared pointer to TensorOperation object.
std::shared_ptr<TensorOperation> Parse() override;
private:
struct Data;
std::shared_ptr<Data> data_;
};
} // namespace audio
} // namespace dataset
} // namespace mindspore

View File

@ -145,6 +145,7 @@ constexpr char kBandBiquadOp[] = "BandBiquadOp";
constexpr char kBandpassBiquadOp[] = "BandpassBiquadOp";
constexpr char kBandrejectBiquadOp[] = "BandrejectBiquadOp";
constexpr char kBassBiquadOp[] = "BassBiquadOp";
constexpr char kFrequencyMaskingOp[] = "FrequencyMaskingOp";
constexpr char kTimeMaskingOp[] = "TimeMaskingOp";
constexpr char kTimeStretchOp[] = "TimeStretchOp";

View File

@ -251,37 +251,37 @@ class BassBiquad(AudioTensorOperation):
return cde.BassBiquadOperation(self.sample_rate, self.gain, self.central_freq, self.Q)
class TimeStretch(AudioTensorOperation):
class FrequencyMasking(AudioTensorOperation):
"""
Stretch STFT in time at a given rate, without changing the pitch.
Apply masking to a spectrogram in the frequency domain.
Args:
hop_length (int, optional): Length of hop between STFT windows (default=None).
n_freq (int, optional): Number of filter banks form STFT (default=201).
fixed_rate (float, optional): Rate to speed up or slow down the input in time (default=None).
iid_masks (bool, optional): Whether to apply different masks to each example (default=false).
frequency_mask_param (int): Maximum possible length of the mask (default=0).
Indices uniformly sampled from [0, frequency_mask_param].
mask_start (int): Mask start when iid_masks=true (default=0).
mask_value (double): Mask value (default=0.0).
Examples:
>>> freq = 44100
>>> num_frame = 30
>>> def gen():
... np.random.seed(0)
... data = np.random.random([freq, num_frame])
... yield (np.array(data, dtype=np.float32), )
>>> data1 = ds.GeneratorDataset(source=gen, column_names=["multi_dimensional_data"])
>>> transforms = [py_audio.TimeStretch()]
>>> data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
... random.seed(0)
... data = numpy.random.random([1, 3, 2])
... yield (numpy.array(data, dtype=numpy.float32),)
>>> dataset = ds.GeneratorDataset(source=gen,
... column_names=["multi_dim_data"])
>>> dataset = dataset.map(operations=FrequencyMasking(frequency_mask_param=1),
... input_columns=["multi_dim_data"])
"""
@check_time_stretch
def __init__(self, hop_length=None, n_freq=201, fixed_rate=None):
self.n_freq = n_freq
self.fixed_rate = fixed_rate
n_fft = (n_freq - 1) * 2
self.hop_length = hop_length if hop_length is not None else n_fft // 2
self.fixed_rate = fixed_rate if fixed_rate is not None else np.nan
@check_masking
def __init__(self, iid_masks=False, frequency_mask_param=0, mask_start=0, mask_value=0.0):
self.iid_masks = iid_masks
self.frequency_mask_param = frequency_mask_param
self.mask_start = mask_start
self.mask_value = mask_value
def parse(self):
return cde.TimeStretchOperation(self.hop_length, self.n_freq, self.fixed_rate)
return cde.FrequencyMaskingOperation(self.iid_masks, self.frequency_mask_param, self.mask_start,
self.mask_value)
class TimeMasking(AudioTensorOperation):
@ -314,3 +314,36 @@ class TimeMasking(AudioTensorOperation):
def parse(self):
return cde.TimeMaskingOperation(self.iid_masks, self.time_mask_param, self.mask_start, self.mask_value)
class TimeStretch(AudioTensorOperation):
"""
Stretch STFT in time at a given rate, without changing the pitch.
Args:
hop_length (int, optional): Length of hop between STFT windows (default=None).
n_freq (int, optional): Number of filter banks form STFT (default=201).
fixed_rate (float, optional): Rate to speed up or slow down the input in time (default=None).
Examples:
>>> freq = 44100
>>> num_frame = 30
>>> def gen():
... np.random.seed(0)
... data = np.random.random([freq, num_frame])
... yield (np.array(data, dtype=np.float32), )
>>> data1 = ds.GeneratorDataset(source=gen, column_names=["multi_dimensional_data"])
>>> transforms = [py_audio.TimeStretch()]
>>> data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
"""
@check_time_stretch
def __init__(self, hop_length=None, n_freq=201, fixed_rate=None):
self.n_freq = n_freq
self.fixed_rate = fixed_rate
n_fft = (n_freq - 1) * 2
self.hop_length = hop_length if hop_length is not None else n_fft // 2
self.fixed_rate = fixed_rate if fixed_rate is not None else np.nan
def parse(self):
return cde.TimeStretchOperation(self.hop_length, self.n_freq, self.fixed_rate)

View File

@ -167,6 +167,26 @@ def check_bass_biquad(method):
return new_method
def check_masking(method):
"""Wrapper method to check the parameters of time_masking and frequency_masking"""
@wraps(method)
def new_method(self, *args, **kwargs):
[iid_masks, mask_param, mask_start, mask_value], _ = parse_user_args(
method, *args, **kwargs)
type_check(iid_masks, (bool,), "iid_masks")
type_check(mask_param, (int,), "mask_param")
check_value(mask_param, (0, FLOAT_MAX_INTEGER), "mask_param")
type_check(mask_start, (int,), "mask_start")
check_value(mask_start, (0, FLOAT_MAX_INTEGER), "mask_start")
type_check(mask_value, (int, float), "mask_value")
check_value(mask_value, (0, DOUBLE_MAX_INTEGER), "mask_value")
return method(self, *args, **kwargs)
return new_method
def check_time_stretch(method):
"""Wrapper method to check the parameters of time_stretch."""
@wraps(method)
@ -186,22 +206,3 @@ def check_time_stretch(method):
return method(self, *args, **kwargs)
return new_method
def check_masking(method):
"""Wrapper method to check the parameters of time_masking and frequency_masking"""
@wraps(method)
def new_method(self, *args, **kwargs):
[iid_masks, mask_param, mask_start, mask_value], _ = parse_user_args(
method, *args, **kwargs)
type_check(iid_masks, (bool,), "iid_masks")
type_check(mask_param, (int,), "mask_param")
check_value(mask_param, (0, FLOAT_MAX_INTEGER), "mask_param")
type_check(mask_start, (int,), "mask_start")
check_value(mask_start, (0, FLOAT_MAX_INTEGER), "mask_start")
type_check(mask_value, (int, float), "mask_value")
check_value(mask_value, (0, DOUBLE_MAX_INTEGER), "mask_value")
return method(self, *args, **kwargs)
return new_method

View File

@ -19,6 +19,8 @@
#include "minddata/dataset/include/dataset/audio.h"
#include "minddata/dataset/include/dataset/datasets.h"
#include "minddata/dataset/include/dataset/execute.h"
#include "minddata/dataset/include/dataset/transforms.h"
using namespace mindspore::dataset;
using mindspore::LogStream;
@ -487,3 +489,64 @@ TEST_F(MindDataTestPipeline, TestAnglePipelineError) {
std::unordered_map<std::string, mindspore::MSTensor> row;
EXPECT_ERROR(iter->GetNextRow(&row));
}
TEST_F(MindDataTestPipeline, TestFrequencyMaskingPipeline) {
MS_LOG(INFO) << "Doing TestFrequencyMasking Pipeline.";
// Original waveform
std::shared_ptr<SchemaObj> schema = Schema();
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {200, 200}));
std::shared_ptr<Dataset> ds = RandomData(50, schema);
EXPECT_NE(ds, nullptr);
ds = ds->SetNumWorkers(4);
EXPECT_NE(ds, nullptr);
auto frequencymasking = audio::FrequencyMasking(true, 6);
ds = ds->Map({frequencymasking});
EXPECT_NE(ds, nullptr);
// Filtered waveform by bandbiquad
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(ds, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
std::vector<int64_t> expected = {200, 200};
int i = 0;
while (row.size() != 0) {
auto col = row["inputData"];
ASSERT_EQ(col.Shape(), expected);
ASSERT_EQ(col.Shape().size(), 2);
ASSERT_EQ(col.DataType(), mindspore::DataType::kNumberTypeFloat32);
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
EXPECT_EQ(i, 50);
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestFrequencyMaskingWrongArgs) {
MS_LOG(INFO) << "Doing TestFrequencyMasking with wrong args.";
// Original waveform
std::shared_ptr<SchemaObj> schema = Schema();
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {20, 20}));
std::shared_ptr<Dataset> ds = RandomData(50, schema);
EXPECT_NE(ds, nullptr);
ds = ds->SetNumWorkers(4);
EXPECT_NE(ds, nullptr);
auto frequencymasking = audio::FrequencyMasking(true, -100);
ds = ds->Map({frequencymasking});
EXPECT_NE(ds, nullptr);
// Filtered waveform by bandbiquad
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure
EXPECT_EQ(iter, nullptr);
}

View File

@ -197,6 +197,19 @@ TEST_F(MindDataTestExecute, TestCrop) {
EXPECT_EQ(image.Shape()[1], 15);
}
TEST_F(MindDataTestExecute, TestFrequencyMasking) {
MS_LOG(INFO) << "Doing TestFrequencyMasking.";
std::shared_ptr<Tensor> input_tensor_;
TensorShape s = TensorShape({6, 2});
ASSERT_OK(Tensor::CreateFromVector(
std::vector<float>({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f}), s, &input_tensor_));
auto input_tensor = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input_tensor_));
std::shared_ptr<TensorTransform> frequency_masking_op = std::make_shared<audio::FrequencyMasking>(true, 2);
mindspore::dataset::Execute transform({frequency_masking_op});
Status status = transform(input_tensor, &input_tensor);
EXPECT_TRUE(status.IsOk());
}
TEST_F(MindDataTestExecute, TestTimeMasking) {
MS_LOG(INFO) << "Doing TestTimeMasking.";
std::shared_ptr<Tensor> input_tensor_;

View File

@ -0,0 +1,137 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing FrequencyMasking op in DE.
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.audio.transforms as atf
from mindspore import log as logger
CHANNEL = 2
FREQ = 30
TIME = 30
def gen(shape):
np.random.seed(0)
data = np.random.random(shape)
yield(np.array(data, dtype=np.float32),)
def _count_unequal_element(data_expected, data_me, rtol, atol):
""" Precision calculation func """
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, \
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
format(data_expected[greater], data_me[greater], error[greater])
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
""" Precision calculation formula """
if np.any(np.isnan(data_expected)):
assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan)
elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan):
_count_unequal_element(data_expected, data_me, rtol, atol)
else:
assert True
def test_func_frequency_masking_eager_random_input():
""" mindspore eager mode normal testcase:frequency_masking op"""
logger.info("test frequency_masking op")
spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0]
out_put = atf.FrequencyMasking(False, 3, 1, 10)(spectrogram)
assert out_put.shape == (CHANNEL, FREQ, TIME)
def test_func_frequency_masking_eager_precision():
""" mindspore eager mode normal testcase:frequency_masking op"""
logger.info("test frequency_masking op")
spectrogram = np.array([[[0.17274511, 0.85174704, 0.07162686, -0.45436913],
[-1.045921, -1.8204843, 0.62333095, -0.09532598],
[1.8175547, -0.25779432, -0.58152324, -0.00221091]],
[[-1.205032, 0.18922766, -0.5277673, -1.3090396],
[1.8914849, -0.97001046, -0.23726775, 0.00525892],
[-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32)
out_ms = atf.FrequencyMasking(False, 2, 0, 0)(spectrogram)
out_benchmark = np.array([[[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[1.8175547, -0.25779432, -0.58152324, -0.00221091]],
[[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32)
allclose_nparray(out_ms, out_benchmark, 0.0001, 0.0001)
def test_func_frequency_masking_pipeline():
""" mindspore pipeline mode normal testcase:frequency_masking op"""
logger.info("test frequency_masking op, pipeline")
generator = gen([CHANNEL, FREQ, TIME])
data1 = ds.GeneratorDataset(source=generator, column_names=[
"multi_dimensional_data"])
transforms = [
atf.FrequencyMasking(True, 8)
]
data1 = data1.map(operations=transforms, input_columns=[
"multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
assert out_put.shape == (CHANNEL, FREQ, TIME)
def test_frequency_masking_invalid_input():
def test_invalid_param(test_name, iid_masks, frequency_mask_param, mask_start, error, error_msg):
logger.info("Test FrequencyMasking with wrong params: {0}".format(test_name))
with pytest.raises(error) as error_info:
atf.FrequencyMasking(iid_masks, frequency_mask_param, mask_start)
assert error_msg in str(error_info.value)
def test_invalid_input(test_name, iid_masks, frequency_mask_param, mask_start, error, error_msg):
logger.info("Test FrequencyMasking with wrong params: {0}".format(test_name))
with pytest.raises(error) as error_info:
spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0]
_ = atf.FrequencyMasking(iid_masks, frequency_mask_param, mask_start)(spectrogram)
assert error_msg in str(error_info.value)
test_invalid_param("invalid mask_start", True, 2, -10, ValueError,
"Input mask_start is not within the required interval of [0, 16777216].")
test_invalid_param("invalid mask_param", True, -2, 10, ValueError,
"Input mask_param is not within the required interval of [0, 16777216].")
test_invalid_param("invalid iid_masks", "True", 2, 10, TypeError,
"Argument iid_masks with value True is not of type [<class 'bool'>], but got <class 'str'>.")
test_invalid_input("invalid mask_start", False, 2, 100, RuntimeError,
"MaskAlongAxis: mask_start should be less than the length of chosen dimension.")
test_invalid_input("invalid mask_width", False, 200, 2, RuntimeError,
"FrequencyMasking: frequency_mask_param should be less than the length of frequency dimension.")
if __name__ == "__main__":
test_func_frequency_masking_eager_random_input()
test_func_frequency_masking_eager_precision()
test_func_frequency_masking_pipeline()
test_frequency_masking_invalid_input()

View File

@ -125,9 +125,9 @@ def test_time_masking_invalid_input():
"Argument iid_masks with value True is not of type [<class 'bool'>], but got <class 'str'>.")
test_invalid_input("invalid mask_start", False, 2, 100, RuntimeError,
"MaskAlongAxis: mask_start should be smaller than the length of chosen dim.")
"MaskAlongAxis: mask_start should be less than the length of chosen dimension.")
test_invalid_input("invalid mask_width", False, 200, 2, RuntimeError,
"TimeMasking: input time_mask_param should be smaller than the length of time dim.")
"TimeMasking: time_mask_param should be less than the length of time dimension.")
if __name__ == "__main__":