diff --git a/mindspore/lite/nnacl/fp32/conv.c b/mindspore/lite/nnacl/fp32/conv.c index e70a533ec9d..ca6c547df84 100644 --- a/mindspore/lite/nnacl/fp32/conv.c +++ b/mindspore/lite/nnacl/fp32/conv.c @@ -271,9 +271,9 @@ void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_ int out_h_block = UP_DIV(conv_param->output_h_, out_unit); int output_count = out_w_block * out_h_block; #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif int output_tile_count = UP_DIV(output_count, tile_num); int out_channel = conv_param->output_channel_; @@ -470,9 +470,9 @@ void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_dat int out_h_block = UP_DIV(conv_param->output_h_, OUPUT_UNIT); int output_count = out_w_block * out_h_block; #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif int output_tile_count = UP_DIV(output_count, tile_num); const int input_unit_square = 4 * 4; diff --git a/mindspore/lite/nnacl/fp32/deconv.c b/mindspore/lite/nnacl/fp32/deconv.c index c680d9b68dc..61c27e12f0e 100644 --- a/mindspore/lite/nnacl/fp32/deconv.c +++ b/mindspore/lite/nnacl/fp32/deconv.c @@ -41,9 +41,9 @@ int DeConvPostFp32C12x8(const float *src, float *tmp, const float *bias, float * size_t output_plane = conv_param->output_w_ * conv_param->output_h_; int oc8 = UP_ROUND(output_channel, C8NUM); #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif int in_plane12 = UP_ROUND(input_plane, tile_num); int src_iw_stride = C8NUM; diff --git a/mindspore/lite/nnacl/fp32/detection_post_process.c b/mindspore/lite/nnacl/fp32/detection_post_process.c index 513da58adad..f7c6953e2c8 100644 --- a/mindspore/lite/nnacl/fp32/detection_post_process.c +++ b/mindspore/lite/nnacl/fp32/detection_post_process.c @@ -55,8 +55,8 @@ void DecodeBoxes(const int num_boxes, const float *input_boxes, const float *anc BboxCorner *decoded_box = (BboxCorner *)(decoded_boxes) + i; float y_center = box->y / scaler.y * anchor->h + anchor->y; float x_center = box->x / scaler.x * anchor->w + anchor->x; - float h_half = 0.5f * expf(box->h / scaler.h) * anchor->h; - float w_half = 0.5f * expf(box->w / scaler.w) * anchor->w; + const float h_half = 0.5f * expf(box->h / scaler.h) * anchor->h; + const float w_half = 0.5f * expf(box->w / scaler.w) * anchor->w; decoded_box->ymin = y_center - h_half; decoded_box->xmin = x_center - w_half; decoded_box->ymax = y_center + h_half; diff --git a/mindspore/lite/nnacl/winograd_transform.c b/mindspore/lite/nnacl/winograd_transform.c index 3391e01d63b..6b28555837c 100644 --- a/mindspore/lite/nnacl/winograd_transform.c +++ b/mindspore/lite/nnacl/winograd_transform.c @@ -68,9 +68,9 @@ void WinogradInputTransform(const float *input_data, float *trans_input, float * } // input transform #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif int dst_ic4_offset = dst_plane_offset + ic * C4NUM; size_t dst_step = tile_num * ic4 * C4NUM; @@ -337,9 +337,9 @@ void Conv3x3Fp32InputTransform(const float *input_data, float *trans_input, floa // input transform #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif int dst_ic4_offset = dst_plane_offset + ic * C4NUM; size_t dst_step = tile_num * ic4 * C4NUM; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_winograd_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_winograd_fp16.cc index 2d0663606b6..fd3b3fd77f9 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_winograd_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/convolution_winograd_fp16.cc @@ -51,6 +51,7 @@ int ConvolutionWinogradFP16CPUKernel::WinogradFilterTransformFp16(const float16_ } auto matrix_gt_data_fp16 = reinterpret_cast(malloc(input_unit_ * kernel_unit_ * sizeof(float16_t))); if (matrix_gt_data_fp16 == nullptr) { + free(matrix_g_data_fp16); MS_LOG(ERROR) << "malloc matrix_gt_data_fp16 failed."; return RET_ERROR; } @@ -61,16 +62,25 @@ int ConvolutionWinogradFP16CPUKernel::WinogradFilterTransformFp16(const float16_ // separate into two steps ===> tmp = G*g ===> out = tmp * GT auto tmp_weight_data = reinterpret_cast(malloc(kernel_unit_ * kernel_unit_ * sizeof(float16_t))); if (tmp_weight_data == nullptr) { + free(matrix_g_data_fp16); + free(matrix_gt_data_fp16); MS_LOG(ERROR) << "malloc tmp_weight_data failed."; return RET_ERROR; } auto tmp_data = reinterpret_cast(malloc(input_unit_ * kernel_unit_ * sizeof(float16_t))); if (tmp_data == nullptr) { + free(tmp_weight_data); + free(matrix_g_data_fp16); + free(matrix_gt_data_fp16); MS_LOG(ERROR) << "malloc tmp_data failed."; return RET_ERROR; } auto trans_out_data = reinterpret_cast(malloc(input_unit_ * input_unit_ * sizeof(float16_t))); if (trans_out_data == nullptr) { + free(tmp_data); + free(tmp_weight_data); + free(matrix_g_data_fp16); + free(matrix_gt_data_fp16); MS_LOG(ERROR) << "malloc trans_out_data failed."; return RET_ERROR; } @@ -206,11 +216,14 @@ int ConvolutionWinogradFP16CPUKernel::InitWeightBias() { } auto matrix_gt = reinterpret_cast(malloc(input_unit_ * kernel_unit_ * sizeof(float))); if (matrix_gt == nullptr) { + free(matrix_g); MS_LOG(ERROR) << "malloc matrix_gt failed."; return RET_ERROR; } ret = MallocTransformMatrices(); if (ret != RET_OK) { + free(matrix_g); + free(matrix_gt); MS_LOG(ERROR) << "Malloc transform matrices failed."; return ret; } @@ -221,6 +234,8 @@ int ConvolutionWinogradFP16CPUKernel::InitWeightBias() { float matrix_bt[MAX_LEN]; ret = CookToomFilter(matrix_a, matrix_at, matrix_b, matrix_bt, matrix_g, matrix_gt, 0.5f, output_unit_, kernel_unit_); if (ret != RET_OK) { + free(matrix_g); + free(matrix_gt); MS_LOG(ERROR) << "get matrix g from CookToomFilter failed."; return ret; } @@ -235,6 +250,8 @@ int ConvolutionWinogradFP16CPUKernel::InitWeightBias() { ret = WinogradFilterTransformFp16(execute_weight_, matrix_g, matrix_gt, oc_block); if (ret != RET_OK) { + free(matrix_g); + free(matrix_gt); MS_LOG(ERROR) << "winograd filter transfrom failed."; return ret; } @@ -242,6 +259,8 @@ int ConvolutionWinogradFP16CPUKernel::InitWeightBias() { // init bias bias_data_ = malloc(oc_block_num * oc_block * sizeof(float16_t)); if (bias_data_ == nullptr) { + free(matrix_g); + free(matrix_gt); MS_LOG(ERROR) << "malloc bias_data_ failed."; return RET_ERROR; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc index 68a5f46382e..505a8edd1f0 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc @@ -200,7 +200,7 @@ int MatmulFP16CPUKernel::Run() { } auto b = reinterpret_cast(in_tensors_[1]->MutableData()); auto out_tensor = out_tensors_[0]; - float16_t *c_ptr; + float16_t *c_ptr = nullptr; if (out_tensor->data_type() == kNumberTypeFloat32) { c_ptr = output_ptr_; } else { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc index 3ad3cfa9a35..2c57806f32e 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc @@ -96,9 +96,9 @@ int Convolution3x3CPUKernel::InitTmpBuffer() { MS_ASSERT(ctx_->allocator != nullptr); #ifdef ENABLE_ARM32 - int tile_num = 4; + const int tile_num = 4; #else - int tile_num = 12; + const int tile_num = 12; #endif size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc index 53cc8b342f7..46af13e2728 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc @@ -47,11 +47,14 @@ int ConvolutionWinogradCPUKernel::WinogradFilterTransform(const float *weight_da } auto tmp_data = reinterpret_cast(malloc(input_unit_ * kernel_unit_ * sizeof(float))); if (tmp_data == nullptr) { + free(tmp_weight_data); MS_LOG(ERROR) << "malloc tmp_data failed."; return RET_MEMORY_FAILED; } auto trans_out_data = reinterpret_cast(malloc(input_unit_ * input_unit_ * sizeof(float))); if (trans_out_data == nullptr) { + free(tmp_data); + free(tmp_weight_data); MS_LOG(ERROR) << "malloc trans_out_data failed."; return RET_MEMORY_FAILED; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/reduce.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/reduce.cc index 81bcc81ae1d..ba447b20c6a 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/reduce.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/reduce.cc @@ -149,7 +149,7 @@ int ReduceCPUKernel::Run() { int ReduceCPUKernel::MallocTmpBuffer() { data_buffers_.clear(); for (auto size : buffer_sizes_) { - void *buffer; + void *buffer = nullptr; if (data_type_ == kDataTypeFloat) { buffer = context_->allocator->Malloc(size * sizeof(float)); } else { diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/squeeze_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/squeeze_int8.cc index 0ea181a2c9b..83345e4aee7 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/squeeze_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/squeeze_int8.cc @@ -143,6 +143,7 @@ int SqueezeInt8CPUKernel::Run() { auto input_size = quant_Squeeze_parm_->input_sizes_[i]; inputs_array[i] = reinterpret_cast(malloc(sizeof(int8_t) * input_size)); if (inputs_array[i] == nullptr) { + free(inputs_array); MS_LOG(ERROR) << "malloc inputs_array[" << i << "]" << " failed."; return RET_ERROR;