forked from mindspore-Ecosystem/mindspore
Optimize performance for master branch
modify CMakeLists.txt remove old MINDSPORE_HCCL_CONFIG_PATH in model zoo decoupling core and debug add lite/test add gpu python pad fp32 support less than 4d input repair distribute training for vgg in D
This commit is contained in:
parent
d1b3096418
commit
514ba6e976
|
@ -1,60 +1,54 @@
|
|||
//#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
__kernel void Concat(__global float *input0, __global float *input1, __global float *output, const int4 input_shape0,
|
||||
const int4 input_shape1, const int4 output_shape, const int axis) {
|
||||
int postion = 0, index_input_shape0 = 0, index_input_shape1 = 0;
|
||||
switch (axis) {
|
||||
case 1:
|
||||
for (int i = 0; i < output_shape.x; i++) {
|
||||
for (int j = 0; j < output_shape.y; j++) {
|
||||
for (int k = 0; k < output_shape.z; k++) {
|
||||
for (int w = 0; w < output_shape.w; w++) {
|
||||
postion = i * output_shape.y * output_shape.z * output_shape.w + j * output_shape.z * output_shape.w +
|
||||
k * output_shape.w + w;
|
||||
if (j < input_shape0.y) {
|
||||
output[postion] = input0[index_input_shape0++];
|
||||
} else {
|
||||
output[postion] = input1[index_input_shape1++];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int i = 0; i < output_shape.x; i++) {
|
||||
for (int j = 0; j < output_shape.y; j++) {
|
||||
for (int k = 0; k < output_shape.z; k++) {
|
||||
for (int w = 0; w < output_shape.w; w++) {
|
||||
postion = i * output_shape.y * output_shape.z * output_shape.w + j * output_shape.z * output_shape.w +
|
||||
k * output_shape.w + w;
|
||||
if (k < input_shape0.z) {
|
||||
output[postion] = input0[index_input_shape0++];
|
||||
} else {
|
||||
output[postion] = input1[index_input_shape1++];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i = 0; i < output_shape.x; i++) {
|
||||
for (int j = 0; j < output_shape.y; j++) {
|
||||
for (int k = 0; k < output_shape.z; k++) {
|
||||
for (int w = 0; w < output_shape.w; w++) {
|
||||
postion = i * output_shape.y * output_shape.z * output_shape.w + j * output_shape.z * output_shape.w +
|
||||
k * output_shape.w + w;
|
||||
if (w < input_shape0.w) {
|
||||
output[postion] = input0[index_input_shape0++];
|
||||
} else {
|
||||
output[postion] = input1[index_input_shape1++];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
uint oh = get_global_id(0);
|
||||
uint ow = get_global_id(1);
|
||||
uint oc = get_global_id(2);
|
||||
uint index_output;
|
||||
uint input_idx;
|
||||
if ((oh >= output_shape.y || oh < 0) || (ow >= output_shape.z || ow < 0) || (oc >= output_shape.w || oc < 0)) {
|
||||
return;
|
||||
}
|
||||
if (axis == 3) {
|
||||
index_output = oh * output_shape.z * output_shape.w + ow * output_shape.w + oc;
|
||||
if (oc < input_shape0.w) {
|
||||
input_idx = (input_shape0.z * oh + ow) * input_shape0.w + oc;
|
||||
output[index_output] = input0[input_idx];
|
||||
} else if ((input_shape0.w <= oc) && oc < (input_shape0.w + input_shape1.w)) {
|
||||
input_idx = (input_shape1.z * oh + ow) * input_shape1.w + (oc - input_shape0.w);
|
||||
output[index_output] = input1[input_idx];
|
||||
} else {
|
||||
output[index_output] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void Concat3input(__global float *input0, __global float *input1, __global float *input2,
|
||||
__global float *output, const int4 input_shape0, const int4 input_shape1,
|
||||
const int4 input_shape2, const int4 output_shape, const int axis) {
|
||||
uint oh = get_global_id(0);
|
||||
uint ow = get_global_id(1);
|
||||
uint oc = get_global_id(2);
|
||||
uint index_output;
|
||||
uint input_idx;
|
||||
if ((oh >= output_shape.y || oh < 0) || (ow >= output_shape.z || ow < 0) || (oc >= output_shape.w || oc < 0)) {
|
||||
return;
|
||||
}
|
||||
index_output = oh * output_shape.z * output_shape.w + ow * output_shape.w + oc;
|
||||
if (oc < (input_shape0.w + input_shape1.w)) {
|
||||
if (oc < input_shape0.w) {
|
||||
input_idx = (input_shape0.z * oh + ow) * input_shape0.w + oc;
|
||||
output[index_output] = input0[input_idx];
|
||||
} else {
|
||||
input_idx = (input_shape1.z * oh + ow) * input_shape1.w + (oc - input_shape0.w);
|
||||
output[index_output] = input1[input_idx];
|
||||
}
|
||||
} else {
|
||||
if ((input_shape0.w + input_shape1.w + input_shape2.w) <= oc) {
|
||||
output[index_output] = 0;
|
||||
} else {
|
||||
input_idx = (input_shape2.z * oh + ow) * input_shape2.w + (oc - input_shape0.w - input_shape1.w);
|
||||
output[index_output] = input2[input_idx];
|
||||
}
|
||||
}
|
||||
}
|
|
@ -13,15 +13,13 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/opencl/kernel/concat.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
#include "src/runtime/kernel/arm/opclib/concat_parameter.h"
|
||||
#ifndef PROGRAM_WITH_IL
|
||||
#include "src/runtime/kernel/opencl/cl/fp32/concat.cl.inc"
|
||||
#endif
|
||||
#include "src/runtime/kernel/opencl/kernel/concat.h"
|
||||
#include "src/backend/opencl/cl/fp32/concat.cl.inc"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
|
@ -35,7 +33,7 @@ int ConcatOpenCLKernel::Init() {
|
|||
}
|
||||
|
||||
auto param = reinterpret_cast<ConcatParameter *>(this->opParameter);
|
||||
MS_LOG(DEBUG) << "concat at axis=: " << param->axis_;
|
||||
MS_LOG(INFO) << "concat at axis=: " << param->axis_;
|
||||
if (param->axis_ != 0 && param->axis_ != 3) {
|
||||
MS_LOG(ERROR) << "only support axis=0 or axis=3";
|
||||
}
|
||||
|
@ -43,20 +41,26 @@ int ConcatOpenCLKernel::Init() {
|
|||
if (param->axis_ == 0) {
|
||||
return 0;
|
||||
}
|
||||
if (inputs_.size() == 2) {
|
||||
std::set<std::string> build_options;
|
||||
std::string source = concat_source_fp32;
|
||||
std::string program_name = "Concat";
|
||||
std::string kernel_name = "Concat";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->LoadSource(program_name, source);
|
||||
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
}
|
||||
|
||||
if (inputs_.size() == 3) {
|
||||
std::set<std::string> build_options;
|
||||
std::string source = concat_source_fp32;
|
||||
std::string program_name = "Concat3input";
|
||||
std::string kernel_name = "Concat3input";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->LoadSource(program_name, source);
|
||||
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
}
|
||||
|
||||
std::string kernel_name = "Concat";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
ocl_runtime->CreateKernelFromIL(kernel_(), kernel_name);
|
||||
#else
|
||||
std::set<std::string> build_options;
|
||||
std::string source = concat_source_fp32;
|
||||
std::string program_name = "Concat";
|
||||
ocl_runtime->LoadSource(program_name, source);
|
||||
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
outputs_[0]->SetFormat(schema::Format_NHWC4);
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -88,42 +92,113 @@ int ConcatOpenCLKernel::Run_axis0() {
|
|||
}
|
||||
return 0;
|
||||
}
|
||||
int DivideRoundUp(int n, int div) {
|
||||
int q = n / div;
|
||||
return n % div == 0 ? q : q + 1;
|
||||
}
|
||||
|
||||
int GetBiggestDividerWithPriority(int number, int max_divider) {
|
||||
if (number % 8 == 0 && 8 <= max_divider) {
|
||||
return number / 8;
|
||||
}
|
||||
if (number % 4 == 0 && 4 <= max_divider) {
|
||||
return number / 4;
|
||||
}
|
||||
if (number % 2 == 0 && 2 <= max_divider) {
|
||||
return number / 2;
|
||||
}
|
||||
for (int i = max_divider; i != 0; i--) {
|
||||
if (number % i == 0) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void ConcatGetWorkGroup(const std::vector<size_t> &global, const std::vector<size_t> &local, int max_size) {
|
||||
int x = std::min(GetBiggestDividerWithPriority(global[0], 8), 4);
|
||||
int yz = max_size / x;
|
||||
int y = std::min(std::min(GetBiggestDividerWithPriority(global[1], 8), yz), 8);
|
||||
int z = std::min(yz / y, DivideRoundUp(global[2], 2));
|
||||
local = {static_cast<unsigned int>(x), static_cast<unsigned int>(y), static_cast<unsigned int>(z)};
|
||||
}
|
||||
int ConcatOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << this->Name() << " Running!";
|
||||
auto param = reinterpret_cast<ConcatParameter *>(this->opParameter);
|
||||
if (param->axis_ == 0) {
|
||||
return Run_axis0();
|
||||
}
|
||||
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
std::vector<size_t> local = {1, 1, 1};
|
||||
std::vector<size_t> global = {1, 1, 1};
|
||||
std::vector<size_t> local;
|
||||
std::vector<size_t> global;
|
||||
if (inputs_.size() == 2) {
|
||||
auto input0_shape = inputs_[0]->shape();
|
||||
auto input1_shape = inputs_[1]->shape();
|
||||
auto output_shape = outputs_[0]->shape();
|
||||
|
||||
auto input0_shape = inputs_[0]->shape();
|
||||
auto input1_shape = inputs_[1]->shape();
|
||||
auto output_shape = outputs_[0]->shape();
|
||||
cl_int4 input0_shape_ = {input0_shape[0], input0_shape[1], input0_shape[2], input0_shape[3]};
|
||||
cl_int4 input1_shape_ = {input1_shape[0], input1_shape[1], input1_shape[2], input1_shape[3]};
|
||||
cl_int4 output_shape_ = {output_shape[0], output_shape[1], output_shape[2], output_shape[3]};
|
||||
cl_int4 input0_shape_ = {input0_shape[0], input0_shape[1], input0_shape[2], input0_shape[3]};
|
||||
cl_int4 input1_shape_ = {input1_shape[0], input1_shape[1], input1_shape[2], input1_shape[3]};
|
||||
cl_int4 output_shape_ = {output_shape[0], output_shape[1], output_shape[2], output_shape[3]};
|
||||
|
||||
int arg_cn = 0;
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[1]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, outputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input0_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input1_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, output_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, param->axis_);
|
||||
uint32_t OH = output_shape[0] * output_shape[1]; // N*H
|
||||
uint32_t OW = output_shape[2];
|
||||
uint32_t OC = output_shape[3];
|
||||
global = {OH, OW, OC}; // HWC
|
||||
ConcatGetWorkGroup(global, local, 384);
|
||||
std::cout << "local size=:" << std::endl;
|
||||
for (int i = 0; i < local.size(); i++) {
|
||||
std::cout << local[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
int arg_cn = 0;
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[1]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, outputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input0_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input1_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, output_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, param->axis_);
|
||||
}
|
||||
if (inputs_.size() == 3) {
|
||||
auto input0_shape = inputs_[0]->shape();
|
||||
auto input1_shape = inputs_[1]->shape();
|
||||
auto input2_shape = inputs_[2]->shape();
|
||||
auto output_shape = outputs_[0]->shape();
|
||||
|
||||
cl_int4 input0_shape_ = {input0_shape[0], input0_shape[1], input0_shape[2], input0_shape[3]};
|
||||
cl_int4 input1_shape_ = {input1_shape[0], input1_shape[1], input1_shape[2], input1_shape[3]};
|
||||
cl_int4 input2_shape_ = {input2_shape[0], input2_shape[1], input2_shape[2], input2_shape[3]};
|
||||
cl_int4 output_shape_ = {output_shape[0], output_shape[1], output_shape[2], output_shape[3]};
|
||||
|
||||
uint32_t OH = output_shape[0] * output_shape[1]; // N*H
|
||||
uint32_t OW = output_shape[2];
|
||||
uint32_t OC = output_shape[3];
|
||||
global = {OH, OW, OC}; // HWC
|
||||
ConcatGetWorkGroup(global, local, 384);
|
||||
std::cout << "local size=:" << std::endl;
|
||||
for (int i = 0; i < local.size(); i++) {
|
||||
std::cout << local[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
int arg_cn = 0;
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[1]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, inputs_[2]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, outputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input0_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input1_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, input2_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, output_shape_);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_cn++, param->axis_);
|
||||
}
|
||||
ocl_runtime->RunKernel(kernel_, global, local, nullptr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLConcatKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
kernel::LiteKernel *OpenCLConcatKernelCreator(const std::vector<tensor::Tensor *> &inputs,
|
||||
const std::vector<tensor::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::Context *ctx, const kernel::KernelKey &desc) {
|
||||
auto *kernel = new ConcatOpenCLKernel(opParameter, inputs, outputs);
|
||||
auto ret = kernel->Init();
|
||||
if (0 != ret) {
|
||||
|
@ -136,4 +211,3 @@ kernel::LiteKernel *OpenCLConcatKernelCreator(const std::vector<lite::tensor::Te
|
|||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Concat, OpenCLConcatKernelCreator);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -17,30 +17,27 @@
|
|||
#ifndef MINDSPORE_LITE_SRC_BACKEND_OPENCL_Concat_H_
|
||||
#define MINDSPORE_LITE_SRC_BACKEND_OPENCL_Concat_H_
|
||||
|
||||
#include <memory.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/anf.h"
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/opclib/concat_parameter.h"
|
||||
#include "src/backend/arm/opclib/conv_parameter.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/concat.h"
|
||||
#include "src/runtime/kernel/arm/opclib/int8/concat_int8.h"
|
||||
#include "src/backend/arm/opclib/concat.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
class ConcatOpenCLKernel : public LiteKernel {
|
||||
public:
|
||||
explicit ConcatOpenCLKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs)
|
||||
explicit ConcatOpenCLKernel(OpParameter *parameter, const std::vector<tensor::Tensor *> &inputs,
|
||||
const std::vector<tensor::Tensor *> &outputs)
|
||||
: LiteKernel(parameter, inputs, outputs) {}
|
||||
|
||||
~ConcatOpenCLKernel() override{};
|
||||
|
||||
int Init() override;
|
||||
|
||||
int InferShape() { return {}; }
|
||||
|
||||
// int InferShape() { return {}; };
|
||||
int InferShape() {}
|
||||
int ReSize() override;
|
||||
|
||||
int Run_axis0();
|
||||
|
@ -52,6 +49,4 @@ class ConcatOpenCLKernel : public LiteKernel {
|
|||
};
|
||||
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_BACKEND_OPENCL_DEPTHWISE_H_
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,164 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include "utils/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/backend/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/backend/opencl/kernel/concat.h"
|
||||
|
||||
using mindspore::kernel;
|
||||
using mindspore::lite;
|
||||
using mindspore;
|
||||
int DivideRoundUp(int n, int div) {
|
||||
int q = n / div;
|
||||
return n % div == 0 ? q : q + 1;
|
||||
}
|
||||
void printfNode(float *result, const std::vector<int> &tempNode) {
|
||||
for (int i = 0; i < tempNode[0]; i++) {
|
||||
for (int j = 0; j < tempNode[1]; j++) {
|
||||
for (int k = 0; k < tempNode[2]; k++) {
|
||||
for (int w = 0; w < tempNode[3]; w++) {
|
||||
std::cout
|
||||
<< result[i * tempNode[2] * tempNode[1] * tempNode[3] + j * tempNode[2] * tempNode[3] + k * tempNode[3] + w]
|
||||
<< " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void ConcatComputeByCPU_2input_dim4_axis3(float *input0, float *input1, float *output, std::vector<int> input_shape0,
|
||||
std::vector<int> input_shape1, std::vector<int> output_shape,
|
||||
const int axis) {
|
||||
int postion, index0 = 0, index1 = 0;
|
||||
for (int i = 0; i < output_shape[0]; i++) {
|
||||
for (int j = 0; j < output_shape[1]; j++) {
|
||||
for (int k = 0; k < output_shape[2]; k++) {
|
||||
postion = i * output_shape[1] * output_shape[2] * output_shape[3] + j * output_shape[2] * output_shape[3] +
|
||||
k * output_shape[3];
|
||||
for (int w = 0; w < output_shape[3]; w++) {
|
||||
if (w < input_shape0[3] + input_shape1[3]) {
|
||||
output[postion++] = (w < input_shape0[3]) ? input0[index0++] : input1[index1++];
|
||||
} else {
|
||||
for (int ind = input_shape0[3] + input_shape1[3]; ind < output_shape[3]; ind++) {
|
||||
output[postion++] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void ConcatComputeByCPU_3input_dim4_axis3(float *input0, float *input1, float *input2, float *output,
|
||||
std::vector<int> input_shape0, std::vector<int> input_shape1,
|
||||
std::vector<int> input_shape2, std::vector<int> output_shape,
|
||||
const int axis) {
|
||||
int postion, index0 = 0, index1 = 0, index2 = 0;
|
||||
for (int i = 0; i < output_shape[0]; i++) {
|
||||
for (int j = 0; j < output_shape[1]; j++) {
|
||||
for (int k = 0; k < output_shape[2]; k++) {
|
||||
postion = i * output_shape[1] * output_shape[2] * output_shape[3] + j * output_shape[2] * output_shape[3] +
|
||||
k * output_shape[3];
|
||||
for (int w = 0; w < output_shape[3]; w++) {
|
||||
if (w < input_shape0[3] + input_shape1[3]) {
|
||||
output[postion++] = (w < input_shape0[3]) ? input0[index0++] : input1[index1++];
|
||||
} else if ((input_shape0[3] + input_shape1[3]) <= w &&
|
||||
w < (input_shape0[3] + input_shape1[3] + input_shape2[3])) {
|
||||
output[postion++] = input2[index2++];
|
||||
} else {
|
||||
for (int ind = input_shape0[3] + input_shape1[3]; ind < output_shape[3]; ind++) {
|
||||
output[postion++] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace mindspore {
|
||||
class TestConcatOpenCL : public UT::Common {
|
||||
public:
|
||||
TestConcatOpenCL(){}
|
||||
};
|
||||
TEST_F(TestConcatOpenCL, ConcatFp32_2input_dim4_axis3) {
|
||||
MS_LOG(INFO) << "begin test";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->Init();
|
||||
|
||||
MS_LOG(INFO) << "init tensors";
|
||||
constexpr int INPUT_NUM = 3;
|
||||
std::array<std::vector<int>, INPUT_NUM> input_shapes = {
|
||||
std::vector<int>{1, 240, 240, 16}, std::vector<int>{1, 240, 240, 16}, std::vector<int>{1, 240, 240, 64}};
|
||||
std::vector<int> output_shape = {1, 240, 240, 96};
|
||||
output_shape[3] = DivideRoundUp(output_shape[3], 4) * 4;
|
||||
auto data_type = kNumberTypeFloat32;
|
||||
auto tensor_type = schema::NodeType_ValueNode;
|
||||
std::vector<tensor::Tensor *> inputs;
|
||||
for (auto &shape : input_shapes) {
|
||||
inputs.push_back(new tensor::Tensor(data_type, shape, schema::Format_NHWC, tensor_type));
|
||||
}
|
||||
auto *output_tensor = new tensor::Tensor(data_type, output_shape, schema::Format_NHWC, tensor_type);
|
||||
std::vector<tensor::Tensor *> outputs{output_tensor};
|
||||
std::cout << "input_shapes size=: " << input_shapes.size() << std::endl;
|
||||
MS_LOG(INFO) << "initialize tensors";
|
||||
auto param = new ConcatParameter();
|
||||
param->axis_ = 3;
|
||||
auto *concat_kernel = new ConcatOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
concat_kernel->Init();
|
||||
|
||||
MS_LOG(INFO) << "initialize sub_graph";
|
||||
std::vector<LiteKernel *> kernels{concat_kernel};
|
||||
auto *sub_graph = new SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
sub_graph->Init();
|
||||
|
||||
MS_LOG(INFO) << "initialize input data";
|
||||
srand(time(NULL));
|
||||
for (auto &input_tensor : inputs) {
|
||||
auto input_data = reinterpret_cast<float *>(input_tensor->Data());
|
||||
for (int i = 0; i < input_tensor->ElementsNum(); ++i) {
|
||||
input_data[i] = static_cast<float>(rand_r() % 10 + 1);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "==================output data================";
|
||||
sub_graph->Run();
|
||||
auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->Data());
|
||||
printf("\n");
|
||||
auto *input_data0 = reinterpret_cast<float *>(inputs[0]->Data());
|
||||
auto *input_data1 = reinterpret_cast<float *>(inputs[1]->Data());
|
||||
std::vector<float> output_data_cpu(output_shape[0] * output_shape[1] * output_shape[2] * output_shape[3]);
|
||||
if (inputs.size() == 2) {
|
||||
ConcatComputeByCPU_2input_dim4_axis3(input_data0, input_data1, output_data_cpu.data(), input_shapes[0],
|
||||
input_shapes[1], output_shape, param->axis_);
|
||||
}
|
||||
if (inputs.size() == 3) {
|
||||
auto *input_data2 = reinterpret_cast<float *>(inputs[2]->Data());
|
||||
ConcatComputeByCPU_3input_dim4_axis3(input_data0, input_data1, input_data2, output_data_cpu.data(), input_shapes[0],
|
||||
input_shapes[1], input_shapes[2], output_shape, param->axis_);
|
||||
}
|
||||
printf("\n");
|
||||
CompareOutputData(output_data_gpu, output_data_cpu.data(), output_tensor->ElementsNum(), 0.00001);
|
||||
MS_LOG(INFO) << "Testconcat passed";
|
||||
}
|
||||
} // namespace mindspore
|
|
@ -1,15 +1,15 @@
|
|||
set(ANF_SRC
|
||||
${ANF_SRC}
|
||||
# core/abstract
|
||||
#core / abstract
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/abstract_function.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/analysis_context.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/param_validator.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/abstract_value.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/dshape.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/abstract/utils.cc
|
||||
# core/base
|
||||
#core / base
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/base/base_ref.cc
|
||||
# core/ir
|
||||
#core / ir
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/ir/anf.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/ir/anf_extends.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../../core/ir/meta_func_graph.cc
|
||||
|
|
Loading…
Reference in New Issue