!9264 export script for resnet50_quant and densenet121,fix centerface and transformaer bug

From: @yuzhenhua666
Reviewed-by: @linqingke,@yingjy
Signed-off-by: @linqingke
This commit is contained in:
mindspore-ci-bot 2020-12-01 17:42:02 +08:00 committed by Gitee
commit 510ed65300
4 changed files with 124 additions and 7 deletions

View File

@ -20,14 +20,14 @@ import mindspore
from mindspore import context, Tensor from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.centerface import CenterfaceMobilev2 from src.centerface import CenterfaceMobilev2, CenterFaceWithNms
from src.config import ConfigCenterface from src.config import ConfigCenterface
parser = argparse.ArgumentParser(description='centerface export') parser = argparse.ArgumentParser(description='centerface export')
parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="centerface.air", help="output file name.") parser.add_argument("--file_name", type=str, default="centerface", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args() args = parser.parse_args()
@ -48,6 +48,7 @@ if __name__ == '__main__':
param_dict_new[key] = values param_dict_new[key] = values
load_param_into_net(net, param_dict_new) load_param_into_net(net, param_dict_new)
net = CenterFaceWithNms(net)
net.set_train(False) net.set_train(False)
input_data = Tensor(np.zeros([args.batch_size, 3, config.input_h, config.input_w]), mindspore.float32) input_data = Tensor(np.zeros([args.batch_size, 3, config.input_h, config.input_w]), mindspore.float32)

View File

@ -0,0 +1,57 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import context, Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
from src.network import DenseNet121
from src.config import config
parser = argparse.ArgumentParser(description="densenet121 export")
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=32, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="densenet121", help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
if __name__ == "__main__":
network = DenseNet121(config.num_classes)
param_dict = load_checkpoint(args.ckpt_file)
param_dict_new = {}
for key, value in param_dict.items():
if key.startswith("moments."):
continue
elif key.startswith("network."):
param_dict_new[key[8:]] = value
else:
param_dict_new[key] = value
load_param_into_net(network, param_dict_new)
network.add_flags_recursive(fp16=True)
network.set_train(False)
shape = [int(args.batch_size), 3] + [int(config.image_size.split(",")[0]), int(config.image_size.split(",")[1])]
input_data = Tensor(np.zeros(shape), mstype.float32)
export(network, input_data, file_name=args.file_name, file_format=args.file_format)

View File

@ -0,0 +1,51 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
from mindspore.compression.quant import QuantizationAwareTraining
from src.config import config_quant
from modelsresnet_quant_manual import resnet50_quant
parser = argparse.ArgumentParser(description='resnet50_quant export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--img_size", type=int, default=224, help="image size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="resnet50_quant", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
if __name__ == "__main__":
config = config_quant
network = resnet50_quant(class_num=config.class_num)
quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False])
network = quantizer.quantize(network)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(network, param_dict)
network.set_train(False)
shape = [config.batch_size, 3] + [args.img_size, args.img_size]
input_data = Tensor(np.zeros(shape).astype(np.float32))
export(network, input_data, file_name=args.file_name, file_format=args.file_format)

View File

@ -12,8 +12,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""export checkpoint file into air models""" """ export checkpoint file into models"""
import argparse
import numpy as np import numpy as np
from mindspore import Tensor, context from mindspore import Tensor, context
@ -23,7 +24,14 @@ from src.transformer_model import TransformerModel
from src.eval_config import cfg, transformer_net_cfg from src.eval_config import cfg, transformer_net_cfg
from eval import load_weights from eval import load_weights
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") parser = argparse.ArgumentParser(description='transformer export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--file_name", type=str, default="transformer", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
if __name__ == '__main__': if __name__ == '__main__':
tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)
@ -31,9 +39,9 @@ if __name__ == '__main__':
parameter_dict = load_weights(cfg.model_file) parameter_dict = load_weights(cfg.model_file)
load_param_into_net(tfm_model, parameter_dict) load_param_into_net(tfm_model, parameter_dict)
source_ids = Tensor(np.ones((1, 128)).astype(np.int32)) source_ids = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
source_mask = Tensor(np.ones((1, 128)).astype(np.int32)) source_mask = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32))
dec_len = transformer_net_cfg.max_decode_length dec_len = transformer_net_cfg.max_decode_length
export(tfm_model, source_ids, source_mask, file_name="len" + str(dec_len) + ".air", file_format="AIR") export(tfm_model, source_ids, source_mask, file_name=args.file_name + str(dec_len), file_format=args.file_format)