diff --git a/mindspore/nn/layer/conv.py b/mindspore/nn/layer/conv.py index 6b164dcab7b..1664422e536 100644 --- a/mindspore/nn/layer/conv.py +++ b/mindspore/nn/layer/conv.py @@ -20,7 +20,7 @@ from mindspore import context from mindspore.ops import operations as P from mindspore.ops.primitive import constexpr from mindspore.common.parameter import Parameter -from mindspore.common.initializer import initializer +from mindspore.common.initializer import initializer, Initializer from mindspore.common.tensor import Tensor from mindspore._checkparam import ParamValidator as validator, Rel from mindspore._checkparam import Validator @@ -251,6 +251,10 @@ class Conv2d(_Conv): stride=self.stride, dilation=self.dilation) weight_shape = [1, self.in_channels, *self.kernel_size] + if isinstance(self.weight_init, Tensor): + self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype) + if isinstance(self.weight_init, Initializer): + self.weight_init.shape = weight_shape self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight') def construct(self, x): diff --git a/tests/st/ops/ascend/test_conv2d_depthwiseconv2d.py b/tests/st/ops/ascend/test_conv2d_depthwiseconv2d.py new file mode 100644 index 00000000000..59bc586877b --- /dev/null +++ b/tests/st/ops/ascend/test_conv2d_depthwiseconv2d.py @@ -0,0 +1,59 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.common.initializer import Normal +from mindspore import Tensor + + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + + +@pytest.mark.level0 +@pytest.mark.platform_x86_ascend_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_str(): + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal') + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_ascend_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_initializer(): + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal()) + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_ascend_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_tensor(): + weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32)) + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init) + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28) diff --git a/tests/st/ops/gpu/test_conv2d_depthwiseconv2d.py b/tests/st/ops/gpu/test_conv2d_depthwiseconv2d.py new file mode 100644 index 00000000000..ee91e05818c --- /dev/null +++ b/tests/st/ops/gpu/test_conv2d_depthwiseconv2d.py @@ -0,0 +1,56 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +import pytest + +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.common.initializer import Normal +from mindspore import Tensor +from mindspore import context + +context.set_context(mode=context.GRAPH_MODE, device_target="GPU") + + +@pytest.mark.level1 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_str(): + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal') + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_initializer(): + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal()) + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_conv2d_depthwiseconv2d_tensor(): + weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32)) + net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init) + input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) + output = net(input_data) + assert output.shape == (3, 128, 32, 28)