forked from mindspore-Ecosystem/mindspore
!1075 Cleanup dataset UT: util.py internals
Merge pull request !1075 from cathwong/ckw_dataset_ut_cleanup3
This commit is contained in:
commit
4fe6ddebd1
|
@ -69,8 +69,8 @@ def test_HWC2CHW_md5():
|
||||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||||
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
||||||
|
|
||||||
# expected md5 from images
|
# Compare with expected md5 from images
|
||||||
filename = "test_HWC2CHW_01_result.npz"
|
filename = "HWC2CHW_01_result.npz"
|
||||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
|
@ -103,9 +103,9 @@ def test_HWC2CHW_comp(plot=False):
|
||||||
c_image = item1["image"]
|
c_image = item1["image"]
|
||||||
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||||
|
|
||||||
# compare images between that applying c_transform and py_transform
|
# Compare images between that applying c_transform and py_transform
|
||||||
mse = diff_mse(py_image, c_image)
|
mse = diff_mse(py_image, c_image)
|
||||||
# the images aren't exactly the same due to rounding error
|
# Note: The images aren't exactly the same due to rounding error
|
||||||
assert mse < 0.001
|
assert mse < 0.001
|
||||||
|
|
||||||
image_c_transposed.append(item1["image"].copy())
|
image_c_transposed.append(item1["image"].copy())
|
||||||
|
|
|
@ -12,10 +12,9 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
import numpy as np
|
||||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import mindspore.dataset as ds
|
import mindspore.dataset as ds
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
from util import diff_mse, visualize, save_and_check_md5
|
from util import diff_mse, visualize, save_and_check_md5
|
||||||
|
@ -60,15 +59,14 @@ def test_center_crop_md5(height=375, width=375):
|
||||||
logger.info("Test CenterCrop")
|
logger.info("Test CenterCrop")
|
||||||
|
|
||||||
# First dataset
|
# First dataset
|
||||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle =False)
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||||
decode_op = vision.Decode()
|
decode_op = vision.Decode()
|
||||||
# 3 images [375, 500] [600, 500] [512, 512]
|
# 3 images [375, 500] [600, 500] [512, 512]
|
||||||
center_crop_op = vision.CenterCrop([height, width])
|
center_crop_op = vision.CenterCrop([height, width])
|
||||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||||
data1 = data1.map(input_columns=["image"], operations=center_crop_op)
|
data1 = data1.map(input_columns=["image"], operations=center_crop_op)
|
||||||
# expected md5 from images
|
# Compare with expected md5 from images
|
||||||
|
filename = "center_crop_01_result.npz"
|
||||||
filename = "test_center_crop_01_result.npz"
|
|
||||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
|
@ -89,7 +87,7 @@ def test_center_crop_comp(height=375, width=375, plot=False):
|
||||||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||||
transforms = [
|
transforms = [
|
||||||
py_vision.Decode(),
|
py_vision.Decode(),
|
||||||
py_vision.CenterCrop([height, width]),
|
py_vision.CenterCrop([height, width]),
|
||||||
py_vision.ToTensor()
|
py_vision.ToTensor()
|
||||||
]
|
]
|
||||||
transform = py_vision.ComposeOp(transforms)
|
transform = py_vision.ComposeOp(transforms)
|
||||||
|
@ -100,27 +98,28 @@ def test_center_crop_comp(height=375, width=375, plot=False):
|
||||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||||
c_image = item1["image"]
|
c_image = item1["image"]
|
||||||
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||||
# the images aren't exactly the same due to rouding error
|
# Note: The images aren't exactly the same due to rounding error
|
||||||
assert (diff_mse(py_image, c_image) < 0.001)
|
assert diff_mse(py_image, c_image) < 0.001
|
||||||
image_cropped.append(item1["image"].copy())
|
image_cropped.append(item1["image"].copy())
|
||||||
image.append(item2["image"].copy())
|
image.append(item2["image"].copy())
|
||||||
if plot:
|
if plot:
|
||||||
visualize(image, image_cropped)
|
visualize(image, image_cropped)
|
||||||
|
|
||||||
|
|
||||||
def test_crop_grayscale(height=375, width=375):
|
def test_crop_grayscale(height=375, width=375):
|
||||||
"""
|
"""
|
||||||
Test that centercrop works with pad and grayscale images
|
Test that centercrop works with pad and grayscale images
|
||||||
"""
|
"""
|
||||||
def channel_swap(image):
|
|
||||||
|
def channel_swap(image):
|
||||||
"""
|
"""
|
||||||
Py func hack for our pytransforms to work with c transforms
|
Py func hack for our pytransforms to work with c transforms
|
||||||
"""
|
"""
|
||||||
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||||
|
|
||||||
transforms = [
|
transforms = [
|
||||||
py_vision.Decode(),
|
py_vision.Decode(),
|
||||||
py_vision.Grayscale(1),
|
py_vision.Grayscale(1),
|
||||||
py_vision.ToTensor(),
|
py_vision.ToTensor(),
|
||||||
(lambda image: channel_swap(image))
|
(lambda image: channel_swap(image))
|
||||||
]
|
]
|
||||||
|
@ -129,16 +128,16 @@ def test_crop_grayscale(height=375, width=375):
|
||||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||||
|
|
||||||
# if input is grayscale, the output dimensions should be single channel
|
# If input is grayscale, the output dimensions should be single channel
|
||||||
crop_gray = vision.CenterCrop([height, width])
|
crop_gray = vision.CenterCrop([height, width])
|
||||||
data1 = data1.map(input_columns=["image"], operations=crop_gray)
|
data1 = data1.map(input_columns=["image"], operations=crop_gray)
|
||||||
|
|
||||||
for item1 in data1.create_dict_iterator():
|
for item1 in data1.create_dict_iterator():
|
||||||
c_image = item1["image"]
|
c_image = item1["image"]
|
||||||
|
|
||||||
# check that the image is grayscale
|
# Check that the image is grayscale
|
||||||
assert (len(c_image.shape) == 3 and c_image.shape[2] == 1)
|
assert (c_image.ndim == 3 and c_image.shape[2] == 1)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_center_crop_op(600, 600)
|
test_center_crop_op(600, 600)
|
||||||
|
|
|
@ -1,41 +0,0 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ==============================================================================
|
|
||||||
from util import save_and_check
|
|
||||||
|
|
||||||
import mindspore.dataset as ds
|
|
||||||
from mindspore import log as logger
|
|
||||||
|
|
||||||
DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
|
|
||||||
SCHEMA_DIR = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
|
||||||
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
|
||||||
"col_sint16", "col_sint32", "col_sint64"]
|
|
||||||
GENERATE_GOLDEN = False
|
|
||||||
|
|
||||||
|
|
||||||
def test_case_columns_list():
|
|
||||||
"""
|
|
||||||
a simple repeat operation.
|
|
||||||
"""
|
|
||||||
logger.info("Test Simple Repeat")
|
|
||||||
# define parameters
|
|
||||||
repeat_count = 2
|
|
||||||
parameters = {"params": {'repeat_count': repeat_count}}
|
|
||||||
columns_list = ["col_sint64", "col_sint32"]
|
|
||||||
# apply dataset operations
|
|
||||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=columns_list, shuffle=False)
|
|
||||||
data1 = data1.repeat(repeat_count)
|
|
||||||
|
|
||||||
filename = "columns_list_result.npz"
|
|
||||||
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
@ -12,12 +12,11 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
import mindspore.dataset as ds
|
||||||
import mindspore.dataset.transforms.c_transforms as C
|
import mindspore.dataset.transforms.c_transforms as C
|
||||||
from mindspore.common import dtype as mstype
|
from mindspore.common import dtype as mstype
|
||||||
from util import ordered_save_and_check
|
from util import save_and_check_tuple
|
||||||
|
|
||||||
import mindspore.dataset as ds
|
|
||||||
|
|
||||||
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||||
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||||
|
@ -32,7 +31,7 @@ def test_case_project_single_column():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_single_column_result.npz"
|
filename = "project_single_column_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_multiple_columns_in_order():
|
def test_case_project_multiple_columns_in_order():
|
||||||
|
@ -43,7 +42,7 @@ def test_case_project_multiple_columns_in_order():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_multiple_columns_in_order_result.npz"
|
filename = "project_multiple_columns_in_order_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_multiple_columns_out_of_order():
|
def test_case_project_multiple_columns_out_of_order():
|
||||||
|
@ -54,7 +53,7 @@ def test_case_project_multiple_columns_out_of_order():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_multiple_columns_out_of_order_result.npz"
|
filename = "project_multiple_columns_out_of_order_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_map():
|
def test_case_project_map():
|
||||||
|
@ -68,7 +67,7 @@ def test_case_project_map():
|
||||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||||
|
|
||||||
filename = "project_map_after_result.npz"
|
filename = "project_map_after_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_map_project():
|
def test_case_map_project():
|
||||||
|
@ -83,7 +82,7 @@ def test_case_map_project():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_map_before_result.npz"
|
filename = "project_map_before_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_between_maps():
|
def test_case_project_between_maps():
|
||||||
|
@ -107,7 +106,7 @@ def test_case_project_between_maps():
|
||||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||||
|
|
||||||
filename = "project_between_maps_result.npz"
|
filename = "project_between_maps_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_repeat():
|
def test_case_project_repeat():
|
||||||
|
@ -121,7 +120,7 @@ def test_case_project_repeat():
|
||||||
data1 = data1.repeat(repeat_count)
|
data1 = data1.repeat(repeat_count)
|
||||||
|
|
||||||
filename = "project_before_repeat_result.npz"
|
filename = "project_before_repeat_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_repeat_project():
|
def test_case_repeat_project():
|
||||||
|
@ -136,7 +135,7 @@ def test_case_repeat_project():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_after_repeat_result.npz"
|
filename = "project_after_repeat_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def test_case_map_project_map_project():
|
def test_case_map_project_map_project():
|
||||||
|
@ -155,4 +154,4 @@ def test_case_map_project_map_project():
|
||||||
data1 = data1.project(columns=columns)
|
data1 = data1.project(columns=columns)
|
||||||
|
|
||||||
filename = "project_alternate_parallel_inline_result.npz"
|
filename = "project_alternate_parallel_inline_result.npz"
|
||||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
|
@ -13,11 +13,10 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||||
from util import save_and_check
|
|
||||||
|
|
||||||
import mindspore.dataset as ds
|
import mindspore.dataset as ds
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
|
from util import save_and_check
|
||||||
|
|
||||||
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||||
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||||
|
@ -25,13 +24,6 @@ COLUMNS_TF = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
||||||
"col_sint16", "col_sint32", "col_sint64"]
|
"col_sint16", "col_sint32", "col_sint64"]
|
||||||
GENERATE_GOLDEN = False
|
GENERATE_GOLDEN = False
|
||||||
|
|
||||||
# Data for CIFAR and MNIST are not part of build tree
|
|
||||||
# They need to be downloaded directly
|
|
||||||
# prep_data.py can be exuted or code below
|
|
||||||
# import sys
|
|
||||||
# sys.path.insert(0,"../../data")
|
|
||||||
# import prep_data
|
|
||||||
# prep_data.download_all_for_test("../../data")
|
|
||||||
IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||||
IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||||
|
|
||||||
|
@ -41,7 +33,7 @@ SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||||
|
|
||||||
def test_tf_repeat_01():
|
def test_tf_repeat_01():
|
||||||
"""
|
"""
|
||||||
a simple repeat operation.
|
Test a simple repeat operation.
|
||||||
"""
|
"""
|
||||||
logger.info("Test Simple Repeat")
|
logger.info("Test Simple Repeat")
|
||||||
# define parameters
|
# define parameters
|
||||||
|
@ -58,7 +50,7 @@ def test_tf_repeat_01():
|
||||||
|
|
||||||
def test_tf_repeat_02():
|
def test_tf_repeat_02():
|
||||||
"""
|
"""
|
||||||
a simple repeat operation to tes infinite
|
Test Infinite Repeat.
|
||||||
"""
|
"""
|
||||||
logger.info("Test Infinite Repeat")
|
logger.info("Test Infinite Repeat")
|
||||||
# define parameters
|
# define parameters
|
||||||
|
@ -77,7 +69,10 @@ def test_tf_repeat_02():
|
||||||
|
|
||||||
|
|
||||||
def test_tf_repeat_03():
|
def test_tf_repeat_03():
|
||||||
'''repeat and batch '''
|
"""
|
||||||
|
Test Repeat then Batch.
|
||||||
|
"""
|
||||||
|
logger.info("Test Repeat then Batch")
|
||||||
data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
|
data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
|
||||||
|
|
||||||
batch_size = 32
|
batch_size = 32
|
||||||
|
@ -90,15 +85,32 @@ def test_tf_repeat_03():
|
||||||
data1 = data1.batch(batch_size, drop_remainder=True)
|
data1 = data1.batch(batch_size, drop_remainder=True)
|
||||||
|
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
for item in data1.create_dict_iterator():
|
for _ in data1.create_dict_iterator():
|
||||||
num_iter += 1
|
num_iter += 1
|
||||||
logger.info("Number of tf data in data1: {}".format(num_iter))
|
logger.info("Number of tf data in data1: {}".format(num_iter))
|
||||||
assert num_iter == 2
|
assert num_iter == 2
|
||||||
|
|
||||||
|
|
||||||
|
def test_tf_repeat_04():
|
||||||
|
"""
|
||||||
|
Test a simple repeat operation with column list.
|
||||||
|
"""
|
||||||
|
logger.info("Test Simple Repeat Column List")
|
||||||
|
# define parameters
|
||||||
|
repeat_count = 2
|
||||||
|
parameters = {"params": {'repeat_count': repeat_count}}
|
||||||
|
columns_list = ["col_sint64", "col_sint32"]
|
||||||
|
# apply dataset operations
|
||||||
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, columns_list=columns_list, shuffle=False)
|
||||||
|
data1 = data1.repeat(repeat_count)
|
||||||
|
|
||||||
|
filename = "repeat_list_result.npz"
|
||||||
|
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||||
|
|
||||||
|
|
||||||
def generator():
|
def generator():
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
yield np.array([i]),
|
(yield np.array([i]),)
|
||||||
|
|
||||||
|
|
||||||
def test_nested_repeat1():
|
def test_nested_repeat1():
|
||||||
|
@ -151,7 +163,7 @@ def test_nested_repeat5():
|
||||||
data = data.repeat(2)
|
data = data.repeat(2)
|
||||||
data = data.repeat(3)
|
data = data.repeat(3)
|
||||||
|
|
||||||
for i, d in enumerate(data):
|
for _, d in enumerate(data):
|
||||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||||
|
|
||||||
assert sum([1 for _ in data]) == 6
|
assert sum([1 for _ in data]) == 6
|
||||||
|
@ -163,7 +175,7 @@ def test_nested_repeat6():
|
||||||
data = data.batch(3)
|
data = data.batch(3)
|
||||||
data = data.repeat(3)
|
data = data.repeat(3)
|
||||||
|
|
||||||
for i, d in enumerate(data):
|
for _, d in enumerate(data):
|
||||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||||
|
|
||||||
assert sum([1 for _ in data]) == 6
|
assert sum([1 for _ in data]) == 6
|
||||||
|
@ -175,7 +187,7 @@ def test_nested_repeat7():
|
||||||
data = data.repeat(3)
|
data = data.repeat(3)
|
||||||
data = data.batch(3)
|
data = data.batch(3)
|
||||||
|
|
||||||
for i, d in enumerate(data):
|
for _, d in enumerate(data):
|
||||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||||
|
|
||||||
assert sum([1 for _ in data]) == 6
|
assert sum([1 for _ in data]) == 6
|
||||||
|
@ -232,11 +244,18 @@ def test_nested_repeat11():
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
logger.info("--------test tf repeat 01---------")
|
test_tf_repeat_01()
|
||||||
# test_repeat_01()
|
test_tf_repeat_02()
|
||||||
|
|
||||||
logger.info("--------test tf repeat 02---------")
|
|
||||||
# test_repeat_02()
|
|
||||||
|
|
||||||
logger.info("--------test tf repeat 03---------")
|
|
||||||
test_tf_repeat_03()
|
test_tf_repeat_03()
|
||||||
|
test_tf_repeat_04()
|
||||||
|
test_nested_repeat1()
|
||||||
|
test_nested_repeat2()
|
||||||
|
test_nested_repeat3()
|
||||||
|
test_nested_repeat4()
|
||||||
|
test_nested_repeat5()
|
||||||
|
test_nested_repeat6()
|
||||||
|
test_nested_repeat7()
|
||||||
|
test_nested_repeat8()
|
||||||
|
test_nested_repeat9()
|
||||||
|
test_nested_repeat10()
|
||||||
|
test_nested_repeat11()
|
||||||
|
|
|
@ -21,12 +21,13 @@ import matplotlib.pyplot as plt
|
||||||
#import jsbeautifier
|
#import jsbeautifier
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
|
|
||||||
|
# These are the column names defined in the testTFTestAllTypes dataset
|
||||||
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
||||||
"col_sint16", "col_sint32", "col_sint64"]
|
"col_sint16", "col_sint32", "col_sint64"]
|
||||||
SAVE_JSON = False
|
SAVE_JSON = False
|
||||||
|
|
||||||
|
|
||||||
def save_golden(cur_dir, golden_ref_dir, result_dict):
|
def _save_golden(cur_dir, golden_ref_dir, result_dict):
|
||||||
"""
|
"""
|
||||||
Save the dictionary values as the golden result in .npz file
|
Save the dictionary values as the golden result in .npz file
|
||||||
"""
|
"""
|
||||||
|
@ -35,7 +36,7 @@ def save_golden(cur_dir, golden_ref_dir, result_dict):
|
||||||
np.savez(golden_ref_dir, np.array(list(result_dict.values())))
|
np.savez(golden_ref_dir, np.array(list(result_dict.values())))
|
||||||
|
|
||||||
|
|
||||||
def save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
def _save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
||||||
"""
|
"""
|
||||||
Save the dictionary (both keys and values) as the golden result in .npz file
|
Save the dictionary (both keys and values) as the golden result in .npz file
|
||||||
"""
|
"""
|
||||||
|
@ -44,7 +45,7 @@ def save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
||||||
np.savez(golden_ref_dir, np.array(list(result_dict.items())))
|
np.savez(golden_ref_dir, np.array(list(result_dict.items())))
|
||||||
|
|
||||||
|
|
||||||
def compare_to_golden(golden_ref_dir, result_dict):
|
def _compare_to_golden(golden_ref_dir, result_dict):
|
||||||
"""
|
"""
|
||||||
Compare as numpy arrays the test result to the golden result
|
Compare as numpy arrays the test result to the golden result
|
||||||
"""
|
"""
|
||||||
|
@ -53,16 +54,15 @@ def compare_to_golden(golden_ref_dir, result_dict):
|
||||||
assert np.array_equal(test_array, golden_array)
|
assert np.array_equal(test_array, golden_array)
|
||||||
|
|
||||||
|
|
||||||
def compare_to_golden_dict(golden_ref_dir, result_dict):
|
def _compare_to_golden_dict(golden_ref_dir, result_dict):
|
||||||
"""
|
"""
|
||||||
Compare as dictionaries the test result to the golden result
|
Compare as dictionaries the test result to the golden result
|
||||||
"""
|
"""
|
||||||
golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0']
|
golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0']
|
||||||
np.testing.assert_equal(result_dict, dict(golden_array))
|
np.testing.assert_equal(result_dict, dict(golden_array))
|
||||||
# assert result_dict == dict(golden_array)
|
|
||||||
|
|
||||||
|
|
||||||
def save_json(filename, parameters, result_dict):
|
def _save_json(filename, parameters, result_dict):
|
||||||
"""
|
"""
|
||||||
Save the result dictionary in json file
|
Save the result dictionary in json file
|
||||||
"""
|
"""
|
||||||
|
@ -78,6 +78,7 @@ def save_and_check(data, parameters, filename, generate_golden=False):
|
||||||
"""
|
"""
|
||||||
Save the dataset dictionary and compare (as numpy array) with golden file.
|
Save the dataset dictionary and compare (as numpy array) with golden file.
|
||||||
Use create_dict_iterator to access the dataset.
|
Use create_dict_iterator to access the dataset.
|
||||||
|
Note: save_and_check() is deprecated; use save_and_check_dict().
|
||||||
"""
|
"""
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
result_dict = {}
|
result_dict = {}
|
||||||
|
@ -97,13 +98,13 @@ def save_and_check(data, parameters, filename, generate_golden=False):
|
||||||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||||
if generate_golden:
|
if generate_golden:
|
||||||
# Save as the golden result
|
# Save as the golden result
|
||||||
save_golden(cur_dir, golden_ref_dir, result_dict)
|
_save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||||
|
|
||||||
compare_to_golden(golden_ref_dir, result_dict)
|
_compare_to_golden(golden_ref_dir, result_dict)
|
||||||
|
|
||||||
if SAVE_JSON:
|
if SAVE_JSON:
|
||||||
# Save result to a json file for inspection
|
# Save result to a json file for inspection
|
||||||
save_json(filename, parameters, result_dict)
|
_save_json(filename, parameters, result_dict)
|
||||||
|
|
||||||
|
|
||||||
def save_and_check_dict(data, filename, generate_golden=False):
|
def save_and_check_dict(data, filename, generate_golden=False):
|
||||||
|
@ -127,14 +128,14 @@ def save_and_check_dict(data, filename, generate_golden=False):
|
||||||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||||
if generate_golden:
|
if generate_golden:
|
||||||
# Save as the golden result
|
# Save as the golden result
|
||||||
save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
_save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||||
|
|
||||||
compare_to_golden_dict(golden_ref_dir, result_dict)
|
_compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||||
|
|
||||||
if SAVE_JSON:
|
if SAVE_JSON:
|
||||||
# Save result to a json file for inspection
|
# Save result to a json file for inspection
|
||||||
parameters = {"params": {}}
|
parameters = {"params": {}}
|
||||||
save_json(filename, parameters, result_dict)
|
_save_json(filename, parameters, result_dict)
|
||||||
|
|
||||||
|
|
||||||
def save_and_check_md5(data, filename, generate_golden=False):
|
def save_and_check_md5(data, filename, generate_golden=False):
|
||||||
|
@ -159,22 +160,21 @@ def save_and_check_md5(data, filename, generate_golden=False):
|
||||||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||||
if generate_golden:
|
if generate_golden:
|
||||||
# Save as the golden result
|
# Save as the golden result
|
||||||
save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
_save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||||
|
|
||||||
compare_to_golden_dict(golden_ref_dir, result_dict)
|
_compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||||
|
|
||||||
|
|
||||||
def ordered_save_and_check(data, parameters, filename, generate_golden=False):
|
def save_and_check_tuple(data, parameters, filename, generate_golden=False):
|
||||||
"""
|
"""
|
||||||
Save the dataset dictionary and compare (as numpy array) with golden file.
|
Save the dataset dictionary and compare (as numpy array) with golden file.
|
||||||
Use create_tuple_iterator to access the dataset.
|
Use create_tuple_iterator to access the dataset.
|
||||||
"""
|
"""
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
|
|
||||||
result_dict = {}
|
result_dict = {}
|
||||||
|
|
||||||
for item in data.create_tuple_iterator(): # each data is a dictionary
|
for item in data.create_tuple_iterator(): # each data is a dictionary
|
||||||
for data_key in range(0, len(item)):
|
for data_key, _ in enumerate(item):
|
||||||
if data_key not in result_dict:
|
if data_key not in result_dict:
|
||||||
result_dict[data_key] = []
|
result_dict[data_key] = []
|
||||||
result_dict[data_key].append(item[data_key].tolist())
|
result_dict[data_key].append(item[data_key].tolist())
|
||||||
|
@ -186,13 +186,13 @@ def ordered_save_and_check(data, parameters, filename, generate_golden=False):
|
||||||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||||
if generate_golden:
|
if generate_golden:
|
||||||
# Save as the golden result
|
# Save as the golden result
|
||||||
save_golden(cur_dir, golden_ref_dir, result_dict)
|
_save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||||
|
|
||||||
compare_to_golden(golden_ref_dir, result_dict)
|
_compare_to_golden(golden_ref_dir, result_dict)
|
||||||
|
|
||||||
if SAVE_JSON:
|
if SAVE_JSON:
|
||||||
# Save result to a json file for inspection
|
# Save result to a json file for inspection
|
||||||
save_json(filename, parameters, result_dict)
|
_save_json(filename, parameters, result_dict)
|
||||||
|
|
||||||
|
|
||||||
def diff_mse(in1, in2):
|
def diff_mse(in1, in2):
|
||||||
|
|
Loading…
Reference in New Issue