forked from mindspore-Ecosystem/mindspore
!1075 Cleanup dataset UT: util.py internals
Merge pull request !1075 from cathwong/ckw_dataset_ut_cleanup3
This commit is contained in:
commit
4fe6ddebd1
|
@ -69,8 +69,8 @@ def test_HWC2CHW_md5():
|
|||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
|
||||
|
||||
# expected md5 from images
|
||||
filename = "test_HWC2CHW_01_result.npz"
|
||||
# Compare with expected md5 from images
|
||||
filename = "HWC2CHW_01_result.npz"
|
||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
|
@ -103,9 +103,9 @@ def test_HWC2CHW_comp(plot=False):
|
|||
c_image = item1["image"]
|
||||
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
# compare images between that applying c_transform and py_transform
|
||||
# Compare images between that applying c_transform and py_transform
|
||||
mse = diff_mse(py_image, c_image)
|
||||
# the images aren't exactly the same due to rounding error
|
||||
# Note: The images aren't exactly the same due to rounding error
|
||||
assert mse < 0.001
|
||||
|
||||
image_c_transposed.append(item1["image"].copy())
|
||||
|
|
|
@ -12,10 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import numpy as np
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
from util import diff_mse, visualize, save_and_check_md5
|
||||
|
@ -60,15 +59,14 @@ def test_center_crop_md5(height=375, width=375):
|
|||
logger.info("Test CenterCrop")
|
||||
|
||||
# First dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle =False)
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
decode_op = vision.Decode()
|
||||
# 3 images [375, 500] [600, 500] [512, 512]
|
||||
center_crop_op = vision.CenterCrop([height, width])
|
||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=center_crop_op)
|
||||
# expected md5 from images
|
||||
|
||||
filename = "test_center_crop_01_result.npz"
|
||||
# Compare with expected md5 from images
|
||||
filename = "center_crop_01_result.npz"
|
||||
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
|
@ -89,7 +87,7 @@ def test_center_crop_comp(height=375, width=375, plot=False):
|
|||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.CenterCrop([height, width]),
|
||||
py_vision.CenterCrop([height, width]),
|
||||
py_vision.ToTensor()
|
||||
]
|
||||
transform = py_vision.ComposeOp(transforms)
|
||||
|
@ -100,27 +98,28 @@ def test_center_crop_comp(height=375, width=375, plot=False):
|
|||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
c_image = item1["image"]
|
||||
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
# the images aren't exactly the same due to rouding error
|
||||
assert (diff_mse(py_image, c_image) < 0.001)
|
||||
# Note: The images aren't exactly the same due to rounding error
|
||||
assert diff_mse(py_image, c_image) < 0.001
|
||||
image_cropped.append(item1["image"].copy())
|
||||
image.append(item2["image"].copy())
|
||||
if plot:
|
||||
visualize(image, image_cropped)
|
||||
|
||||
|
||||
def test_crop_grayscale(height=375, width=375):
|
||||
def test_crop_grayscale(height=375, width=375):
|
||||
"""
|
||||
Test that centercrop works with pad and grayscale images
|
||||
Test that centercrop works with pad and grayscale images
|
||||
"""
|
||||
def channel_swap(image):
|
||||
|
||||
def channel_swap(image):
|
||||
"""
|
||||
Py func hack for our pytransforms to work with c transforms
|
||||
"""
|
||||
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
|
||||
|
||||
transforms = [
|
||||
py_vision.Decode(),
|
||||
py_vision.Grayscale(1),
|
||||
py_vision.Grayscale(1),
|
||||
py_vision.ToTensor(),
|
||||
(lambda image: channel_swap(image))
|
||||
]
|
||||
|
@ -129,16 +128,16 @@ def test_crop_grayscale(height=375, width=375):
|
|||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data1 = data1.map(input_columns=["image"], operations=transform())
|
||||
|
||||
# if input is grayscale, the output dimensions should be single channel
|
||||
# If input is grayscale, the output dimensions should be single channel
|
||||
crop_gray = vision.CenterCrop([height, width])
|
||||
data1 = data1.map(input_columns=["image"], operations=crop_gray)
|
||||
|
||||
for item1 in data1.create_dict_iterator():
|
||||
c_image = item1["image"]
|
||||
|
||||
# check that the image is grayscale
|
||||
assert (len(c_image.shape) == 3 and c_image.shape[2] == 1)
|
||||
|
||||
|
||||
# Check that the image is grayscale
|
||||
assert (c_image.ndim == 3 and c_image.shape[2] == 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_center_crop_op(600, 600)
|
||||
|
|
|
@ -1,41 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
from util import save_and_check
|
||||
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||
SCHEMA_DIR = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
||||
"col_sint16", "col_sint32", "col_sint64"]
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
|
||||
def test_case_columns_list():
|
||||
"""
|
||||
a simple repeat operation.
|
||||
"""
|
||||
logger.info("Test Simple Repeat")
|
||||
# define parameters
|
||||
repeat_count = 2
|
||||
parameters = {"params": {'repeat_count': repeat_count}}
|
||||
columns_list = ["col_sint64", "col_sint32"]
|
||||
# apply dataset operations
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=columns_list, shuffle=False)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
filename = "columns_list_result.npz"
|
||||
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
@ -12,12 +12,11 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore.common import dtype as mstype
|
||||
from util import ordered_save_and_check
|
||||
from util import save_and_check_tuple
|
||||
|
||||
import mindspore.dataset as ds
|
||||
|
||||
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||
|
@ -32,7 +31,7 @@ def test_case_project_single_column():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_single_column_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_project_multiple_columns_in_order():
|
||||
|
@ -43,7 +42,7 @@ def test_case_project_multiple_columns_in_order():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_multiple_columns_in_order_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_project_multiple_columns_out_of_order():
|
||||
|
@ -54,7 +53,7 @@ def test_case_project_multiple_columns_out_of_order():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_multiple_columns_out_of_order_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_project_map():
|
||||
|
@ -68,7 +67,7 @@ def test_case_project_map():
|
|||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
|
||||
filename = "project_map_after_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_map_project():
|
||||
|
@ -83,7 +82,7 @@ def test_case_map_project():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_map_before_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_project_between_maps():
|
||||
|
@ -107,7 +106,7 @@ def test_case_project_between_maps():
|
|||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
|
||||
filename = "project_between_maps_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_project_repeat():
|
||||
|
@ -121,7 +120,7 @@ def test_case_project_repeat():
|
|||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
filename = "project_before_repeat_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_repeat_project():
|
||||
|
@ -136,7 +135,7 @@ def test_case_repeat_project():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_after_repeat_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def test_case_map_project_map_project():
|
||||
|
@ -155,4 +154,4 @@ def test_case_map_project_map_project():
|
|||
data1 = data1.project(columns=columns)
|
||||
|
||||
filename = "project_alternate_parallel_inline_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
|
|
@ -13,11 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from util import save_and_check
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import numpy as np
|
||||
from mindspore import log as logger
|
||||
from util import save_and_check
|
||||
|
||||
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||
|
@ -25,13 +24,6 @@ COLUMNS_TF = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
|||
"col_sint16", "col_sint32", "col_sint64"]
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
# Data for CIFAR and MNIST are not part of build tree
|
||||
# They need to be downloaded directly
|
||||
# prep_data.py can be exuted or code below
|
||||
# import sys
|
||||
# sys.path.insert(0,"../../data")
|
||||
# import prep_data
|
||||
# prep_data.download_all_for_test("../../data")
|
||||
IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
@ -41,7 +33,7 @@ SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|||
|
||||
def test_tf_repeat_01():
|
||||
"""
|
||||
a simple repeat operation.
|
||||
Test a simple repeat operation.
|
||||
"""
|
||||
logger.info("Test Simple Repeat")
|
||||
# define parameters
|
||||
|
@ -58,7 +50,7 @@ def test_tf_repeat_01():
|
|||
|
||||
def test_tf_repeat_02():
|
||||
"""
|
||||
a simple repeat operation to tes infinite
|
||||
Test Infinite Repeat.
|
||||
"""
|
||||
logger.info("Test Infinite Repeat")
|
||||
# define parameters
|
||||
|
@ -77,7 +69,10 @@ def test_tf_repeat_02():
|
|||
|
||||
|
||||
def test_tf_repeat_03():
|
||||
'''repeat and batch '''
|
||||
"""
|
||||
Test Repeat then Batch.
|
||||
"""
|
||||
logger.info("Test Repeat then Batch")
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
|
||||
|
||||
batch_size = 32
|
||||
|
@ -90,15 +85,32 @@ def test_tf_repeat_03():
|
|||
data1 = data1.batch(batch_size, drop_remainder=True)
|
||||
|
||||
num_iter = 0
|
||||
for item in data1.create_dict_iterator():
|
||||
for _ in data1.create_dict_iterator():
|
||||
num_iter += 1
|
||||
logger.info("Number of tf data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_tf_repeat_04():
|
||||
"""
|
||||
Test a simple repeat operation with column list.
|
||||
"""
|
||||
logger.info("Test Simple Repeat Column List")
|
||||
# define parameters
|
||||
repeat_count = 2
|
||||
parameters = {"params": {'repeat_count': repeat_count}}
|
||||
columns_list = ["col_sint64", "col_sint32"]
|
||||
# apply dataset operations
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, columns_list=columns_list, shuffle=False)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
filename = "repeat_list_result.npz"
|
||||
save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
|
||||
def generator():
|
||||
for i in range(3):
|
||||
yield np.array([i]),
|
||||
(yield np.array([i]),)
|
||||
|
||||
|
||||
def test_nested_repeat1():
|
||||
|
@ -151,7 +163,7 @@ def test_nested_repeat5():
|
|||
data = data.repeat(2)
|
||||
data = data.repeat(3)
|
||||
|
||||
for i, d in enumerate(data):
|
||||
for _, d in enumerate(data):
|
||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||
|
||||
assert sum([1 for _ in data]) == 6
|
||||
|
@ -163,7 +175,7 @@ def test_nested_repeat6():
|
|||
data = data.batch(3)
|
||||
data = data.repeat(3)
|
||||
|
||||
for i, d in enumerate(data):
|
||||
for _, d in enumerate(data):
|
||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||
|
||||
assert sum([1 for _ in data]) == 6
|
||||
|
@ -175,7 +187,7 @@ def test_nested_repeat7():
|
|||
data = data.repeat(3)
|
||||
data = data.batch(3)
|
||||
|
||||
for i, d in enumerate(data):
|
||||
for _, d in enumerate(data):
|
||||
assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
|
||||
|
||||
assert sum([1 for _ in data]) == 6
|
||||
|
@ -232,11 +244,18 @@ def test_nested_repeat11():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info("--------test tf repeat 01---------")
|
||||
# test_repeat_01()
|
||||
|
||||
logger.info("--------test tf repeat 02---------")
|
||||
# test_repeat_02()
|
||||
|
||||
logger.info("--------test tf repeat 03---------")
|
||||
test_tf_repeat_01()
|
||||
test_tf_repeat_02()
|
||||
test_tf_repeat_03()
|
||||
test_tf_repeat_04()
|
||||
test_nested_repeat1()
|
||||
test_nested_repeat2()
|
||||
test_nested_repeat3()
|
||||
test_nested_repeat4()
|
||||
test_nested_repeat5()
|
||||
test_nested_repeat6()
|
||||
test_nested_repeat7()
|
||||
test_nested_repeat8()
|
||||
test_nested_repeat9()
|
||||
test_nested_repeat10()
|
||||
test_nested_repeat11()
|
||||
|
|
|
@ -21,12 +21,13 @@ import matplotlib.pyplot as plt
|
|||
#import jsbeautifier
|
||||
from mindspore import log as logger
|
||||
|
||||
# These are the column names defined in the testTFTestAllTypes dataset
|
||||
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
||||
"col_sint16", "col_sint32", "col_sint64"]
|
||||
SAVE_JSON = False
|
||||
|
||||
|
||||
def save_golden(cur_dir, golden_ref_dir, result_dict):
|
||||
def _save_golden(cur_dir, golden_ref_dir, result_dict):
|
||||
"""
|
||||
Save the dictionary values as the golden result in .npz file
|
||||
"""
|
||||
|
@ -35,7 +36,7 @@ def save_golden(cur_dir, golden_ref_dir, result_dict):
|
|||
np.savez(golden_ref_dir, np.array(list(result_dict.values())))
|
||||
|
||||
|
||||
def save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
||||
def _save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
||||
"""
|
||||
Save the dictionary (both keys and values) as the golden result in .npz file
|
||||
"""
|
||||
|
@ -44,7 +45,7 @@ def save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
|||
np.savez(golden_ref_dir, np.array(list(result_dict.items())))
|
||||
|
||||
|
||||
def compare_to_golden(golden_ref_dir, result_dict):
|
||||
def _compare_to_golden(golden_ref_dir, result_dict):
|
||||
"""
|
||||
Compare as numpy arrays the test result to the golden result
|
||||
"""
|
||||
|
@ -53,16 +54,15 @@ def compare_to_golden(golden_ref_dir, result_dict):
|
|||
assert np.array_equal(test_array, golden_array)
|
||||
|
||||
|
||||
def compare_to_golden_dict(golden_ref_dir, result_dict):
|
||||
def _compare_to_golden_dict(golden_ref_dir, result_dict):
|
||||
"""
|
||||
Compare as dictionaries the test result to the golden result
|
||||
"""
|
||||
golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0']
|
||||
np.testing.assert_equal(result_dict, dict(golden_array))
|
||||
# assert result_dict == dict(golden_array)
|
||||
|
||||
|
||||
def save_json(filename, parameters, result_dict):
|
||||
def _save_json(filename, parameters, result_dict):
|
||||
"""
|
||||
Save the result dictionary in json file
|
||||
"""
|
||||
|
@ -78,6 +78,7 @@ def save_and_check(data, parameters, filename, generate_golden=False):
|
|||
"""
|
||||
Save the dataset dictionary and compare (as numpy array) with golden file.
|
||||
Use create_dict_iterator to access the dataset.
|
||||
Note: save_and_check() is deprecated; use save_and_check_dict().
|
||||
"""
|
||||
num_iter = 0
|
||||
result_dict = {}
|
||||
|
@ -97,13 +98,13 @@ def save_and_check(data, parameters, filename, generate_golden=False):
|
|||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||
if generate_golden:
|
||||
# Save as the golden result
|
||||
save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||
_save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||
|
||||
compare_to_golden(golden_ref_dir, result_dict)
|
||||
_compare_to_golden(golden_ref_dir, result_dict)
|
||||
|
||||
if SAVE_JSON:
|
||||
# Save result to a json file for inspection
|
||||
save_json(filename, parameters, result_dict)
|
||||
_save_json(filename, parameters, result_dict)
|
||||
|
||||
|
||||
def save_and_check_dict(data, filename, generate_golden=False):
|
||||
|
@ -127,14 +128,14 @@ def save_and_check_dict(data, filename, generate_golden=False):
|
|||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||
if generate_golden:
|
||||
# Save as the golden result
|
||||
save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||
_save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||
|
||||
compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||
_compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||
|
||||
if SAVE_JSON:
|
||||
# Save result to a json file for inspection
|
||||
parameters = {"params": {}}
|
||||
save_json(filename, parameters, result_dict)
|
||||
_save_json(filename, parameters, result_dict)
|
||||
|
||||
|
||||
def save_and_check_md5(data, filename, generate_golden=False):
|
||||
|
@ -159,22 +160,21 @@ def save_and_check_md5(data, filename, generate_golden=False):
|
|||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||
if generate_golden:
|
||||
# Save as the golden result
|
||||
save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||
_save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
||||
|
||||
compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||
_compare_to_golden_dict(golden_ref_dir, result_dict)
|
||||
|
||||
|
||||
def ordered_save_and_check(data, parameters, filename, generate_golden=False):
|
||||
def save_and_check_tuple(data, parameters, filename, generate_golden=False):
|
||||
"""
|
||||
Save the dataset dictionary and compare (as numpy array) with golden file.
|
||||
Use create_tuple_iterator to access the dataset.
|
||||
"""
|
||||
num_iter = 0
|
||||
|
||||
result_dict = {}
|
||||
|
||||
for item in data.create_tuple_iterator(): # each data is a dictionary
|
||||
for data_key in range(0, len(item)):
|
||||
for data_key, _ in enumerate(item):
|
||||
if data_key not in result_dict:
|
||||
result_dict[data_key] = []
|
||||
result_dict[data_key].append(item[data_key].tolist())
|
||||
|
@ -186,13 +186,13 @@ def ordered_save_and_check(data, parameters, filename, generate_golden=False):
|
|||
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
||||
if generate_golden:
|
||||
# Save as the golden result
|
||||
save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||
_save_golden(cur_dir, golden_ref_dir, result_dict)
|
||||
|
||||
compare_to_golden(golden_ref_dir, result_dict)
|
||||
_compare_to_golden(golden_ref_dir, result_dict)
|
||||
|
||||
if SAVE_JSON:
|
||||
# Save result to a json file for inspection
|
||||
save_json(filename, parameters, result_dict)
|
||||
_save_json(filename, parameters, result_dict)
|
||||
|
||||
|
||||
def diff_mse(in1, in2):
|
||||
|
|
Loading…
Reference in New Issue