[feat][assistant][I3J6U2] Add new audio operator CreateDct

This commit is contained in:
tophand 2021-10-18 03:23:18 -07:00
parent e37c4fc246
commit 4f4777f0da
10 changed files with 285 additions and 2 deletions

View File

@ -2,6 +2,7 @@ file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc"
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
if(ENABLE_PYTHON)
add_library(APItoPython OBJECT
python/bindings/dataset/audio/bindings.cc
python/bindings/dataset/audio/kernels/ir/bindings.cc
python/bindings/dataset/callback/bindings.cc
python/bindings/dataset/core/bindings.cc

View File

@ -44,6 +44,7 @@
#include "minddata/dataset/audio/ir/kernels/time_stretch_ir.h"
#include "minddata/dataset/audio/ir/kernels/treble_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/vol_ir.h"
#include "minddata/dataset/audio/kernels/audio_utils.h"
namespace mindspore {
namespace dataset {
@ -209,6 +210,18 @@ std::shared_ptr<TensorOperation> DCShift::Parse() {
return std::make_shared<DCShiftOperation>(data_->shift_, data_->limiter_gain_);
}
Status CreateDct(mindspore::MSTensor *output, int32_t n_mfcc, int32_t n_mels, NormMode norm) {
RETURN_UNEXPECTED_IF_NULL(output);
CHECK_FAIL_RETURN_UNEXPECTED(n_mfcc > 0, "CreateDct: n_mfcc must be greater than 0, got: " + std::to_string(n_mfcc));
CHECK_FAIL_RETURN_UNEXPECTED(n_mels > 0, "CreateDct: n_mels must be greater than 0, got: " + std::to_string(n_mels));
std::shared_ptr<dataset::Tensor> dct;
RETURN_IF_NOT_OK(Dct(&dct, n_mfcc, n_mels, norm));
CHECK_FAIL_RETURN_UNEXPECTED(dct->HasData(), "CreateDct: get an empty tensor with shape " + dct->shape().ToString());
*output = mindspore::MSTensor(std::make_shared<DETensor>(dct));
return Status::OK();
}
// DeemphBiquad Transform Operation.
struct DeemphBiquad::Data {
explicit Data(int32_t sample_rate) : sample_rate_(sample_rate) {}

View File

@ -0,0 +1,40 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pybind11/pybind11.h"
#include "minddata/dataset/api/python/pybind_conversion.h"
#include "minddata/dataset/api/python/pybind_register.h"
#include "minddata/dataset/audio/kernels/audio_utils.h"
namespace mindspore {
namespace dataset {
PYBIND_REGISTER(CreateDct, 1, ([](py::module *m) {
(void)m->def("CreateDct", ([](int32_t n_mfcc, int32_t n_mels, NormMode norm) {
std::shared_ptr<Tensor> out;
THROW_IF_ERROR(Dct(&out, n_mfcc, n_mels, norm));
return out;
}));
}));
PYBIND_REGISTER(NormMode, 0, ([](const py::module *m) {
(void)py::enum_<NormMode>(*m, "NormMode", py::arithmetic())
.value("DE_NORMMODE_NONE", NormMode::kNone)
.value("DE_NORMMODE_ORTHO", NormMode::kOrtho)
.export_values();
}));
} // namespace dataset
} // namespace mindspore

View File

@ -348,6 +348,34 @@ Status TimeStretch(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor>
return Status::OK();
}
Status Dct(std::shared_ptr<Tensor> *output, int n_mfcc, int n_mels, NormMode norm) {
TensorShape dct_shape({n_mels, n_mfcc});
Tensor::CreateEmpty(dct_shape, DataType(DataType::DE_FLOAT32), output);
auto iter = (*output)->begin<float>();
float sqrt_2 = 1 / sqrt(2);
float sqrt_2_n_mels = sqrt(2.0 / n_mels);
for (int i = 0; i < n_mels; i++) {
for (int j = 0; j < n_mfcc; j++) {
// calculate temp:
// 1. while norm = None, use 2*cos(PI*(i+0.5)*j/n_mels)
// 2. while norm = Ortho, divide the first row by sqrt(2),
// then using sqrt(2.0 / n_mels)*cos(PI*(i+0.5)*j/n_mels)
float temp = PI / n_mels * (i + 0.5) * j;
temp = cos(temp);
if (norm == NormMode::kOrtho) {
if (j == 0) {
temp *= sqrt_2;
}
temp *= sqrt_2_n_mels;
} else {
temp *= 2;
}
(*iter++) = temp;
}
}
return Status::OK();
}
Status RandomMaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t mask_param,
float mask_value, int axis, std::mt19937 rnd) {
std::uniform_int_distribution<int32_t> mask_width_value(0, mask_param);

View File

@ -304,6 +304,13 @@ Status RandomMaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr
Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t mask_width,
int32_t mask_start, float mask_value, int32_t axis);
/// \brief Create a DCT transformation matrix with shape (n_mels, n_mfcc), normalized depending on norm.
/// \param n_mfcc: Number of mfc coefficients to retain, the value must be greater than 0.
/// \param n_mels: Number of mel filterbanks, the value must be greater than 0.
/// \param norm: Norm to use, can be NormMode::kNone or NormMode::kOrtho.
/// \return Status code.
Status Dct(std::shared_ptr<Tensor> *output, int32_t n_mfcc, int32_t n_mels, NormMode norm);
/// \brief Compute the norm of complex tensor input.
/// \param power Power of the norm description (optional).
/// \param input Tensor shape of <..., complex=2>.

View File

@ -25,8 +25,9 @@
#include "include/api/dual_abi_helper.h"
#include "include/api/status.h"
#include "minddata/dataset/include/dataset/constants.h"
#include "minddata/dataset/include/dataset/transforms.h"
#include "include/api/types.h"
#include "include/dataset/constants.h"
#include "include/dataset/transforms.h"
namespace mindspore {
namespace dataset {
@ -281,6 +282,12 @@ class DCShift : public TensorTransform {
std::shared_ptr<Data> data_;
};
/// \param[in] n_mfcc Number of mfc coefficients to retain, the value must be greater than 0.
/// \param[in] n_mels Number of mel filterbanks, the value must be greater than 0.
/// \param[in] norm Norm to use, can be NormMode::kNone or NormMode::kOrtho.
/// \return Status error code, returns OK if no error encountered.
Status CreateDct(mindspore::MSTensor *output, int32_t n_mfcc, int32_t n_mels, NormMode norm = NormMode::kNone);
/// \brief Design two-pole deemph filter. Similar to SoX implementation.
class DeemphBiquad final : public TensorTransform {
public:

View File

@ -62,6 +62,12 @@ enum class ConvertMode {
COLOR_RGBA2GRAY = 11 ///< Convert RGBA image to GRAY image.
};
/// \brief Values of norm in CreateDct.
enum class NormMode {
kNone = 0, ///< None type norm.
kOrtho = 1 ///< Ortho type norm.
};
/// \brief Target devices to perform map operation.
enum class MapTargetDevice {
kCpu, ///< CPU Device.

View File

@ -17,6 +17,7 @@ enum for audio ops
"""
from enum import Enum
import mindspore._c_dataengine as cde
class FadeShape(str, Enum):
@ -91,3 +92,52 @@ class ScaleType(str, Enum):
"""
POWER: str = "power"
MAGNITUDE: str = "magnitude"
class NormMode(str, Enum):
"""
Norm Types.
Possible enumeration values are: NormMode.NONE, NormMode.ORTHO.
- NormMode.NONE: means the mode of input audio is none.
- NormMode.ORTHO: means the mode of input audio is ortho.
"""
NONE: str = "none"
ORTHO: str = "ortho"
DE_C_NORMMODE_TYPE = {NormMode.NONE: cde.NormMode.DE_NORMMODE_NONE,
NormMode.ORTHO: cde.NormMode.DE_NORMMODE_ORTHO}
def CreateDct(n_mfcc, n_mels, norm=NormMode.NONE):
"""
Create a DCT transformation matrix with shape (n_mels, n_mfcc), normalized depending on norm.
Args:
n_mfcc (int): Number of mfc coefficients to retain, the value must be greater than 0.
n_mels (int): Number of mel filterbanks, the value must be greater than 0.
norm (NormMode): Normalization mode, can be NormMode.NONE or NormMode.ORTHO (default=NormMode.NONE).
Returns:
numpy.ndarray, the transformation matrix, to be right-multiplied to row-wise data of size (n_mels, n_mfcc).
Examples:
>>> dct = audio.CreateDct(100, 200, audio.NormMode.NONE)
"""
if not isinstance(n_mfcc, int):
raise TypeError("n_mfcc with value {0} is not of type {1}, but got {2}.".format(
n_mfcc, int, type(n_mfcc)))
if not isinstance(n_mels, int):
raise TypeError("n_mels with value {0} is not of type {1}, but got {2}.".format(
n_mels, int, type(n_mels)))
if not isinstance(norm, NormMode):
raise TypeError("norm with value {0} is not of type {1}, but got {2}.".format(
norm, NormMode, type(norm)))
if n_mfcc <= 0:
raise ValueError("n_mfcc must be greater than 0, but got {0}.".format(n_mfcc))
if n_mels <= 0:
raise ValueError("n_mels must be greater than 0, but got {0}.".format(n_mels))
return cde.CreateDct(n_mfcc, n_mels, DE_C_NORMMODE_TYPE[norm]).as_array()

View File

@ -1662,3 +1662,39 @@ TEST_F(MindDataTestPipeline, TestFlangerParamCheck) {
std::shared_ptr<Iterator> iterPhase = dsPhase->CreateIterator();
EXPECT_EQ(iterPhase, nullptr);
}
/// Feature: CreateDct
/// Description: test CreateDct in eager mode
/// Expectation: the returned result is as expected
TEST_F(MindDataTestPipeline, TestCreateDctNone) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCreateDctNone.";
mindspore::MSTensor output;
Status s01 = audio::CreateDct(&output, 200, 400, NormMode::kNone);
EXPECT_TRUE(s01.IsOk());
}
/// Feature: CreateDct
/// Description: test CreateDct in eager mode
/// Expectation: the returned result is as expected
TEST_F(MindDataTestPipeline, TestCreateDctOrtho) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCreateDctOrtho.";
mindspore::MSTensor output;
Status s02 = audio::CreateDct(&output, 200, 400, NormMode::kOrtho);
EXPECT_TRUE(s02.IsOk());
}
/// Feature: CreateDct
/// Description: test WrongArg of CreateDct
/// Expectation: return error
TEST_F(MindDataTestPipeline, TestCreateDctWrongArg) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCreateDctWrongArg.";
mindspore::MSTensor output;
// Check n_mfcc
MS_LOG(INFO) << "n_mfcc is negative.";
Status s03 = audio::CreateDct(&output, -200, 400, NormMode::kNone);
EXPECT_FALSE(s03.IsOk());
// Check n_mels
MS_LOG(INFO) << "n_mels is negative.";
Status s04 = audio::CreateDct(&output, 200, -400, NormMode::kOrtho);
EXPECT_FALSE(s04.IsOk());
}

View File

@ -0,0 +1,95 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import pytest
import mindspore.dataset.audio.utils as audio
from mindspore import log as logger
def count_unequal_element(data_expected, data_me, rtol, atol):
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, \
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
format(data_expected[greater], data_me[greater], error[greater])
def test_create_dct_none():
"""
Feature: CreateDct
Description: test CreateDct in eager mode
Expectation: the returned result is as expected
"""
expect = np.array([[2.00000000, 1.84775901],
[2.00000000, 0.76536685],
[2.00000000, -0.76536703],
[2.00000000, -1.84775925]], dtype=np.float64)
output = audio.CreateDct(2, 4, audio.NormMode.NONE)
count_unequal_element(expect, output, 0.0001, 0.0001)
def test_create_dct_ortho():
"""
Feature: CreateDct
Description: test CreateDct in eager mode
Expectation: the returned result is as expected
"""
output = audio.CreateDct(1, 3, audio.NormMode.ORTHO)
expect = np.array([[0.57735026],
[0.57735026],
[0.57735026]], dtype=np.float64)
count_unequal_element(expect, output, 0.0001, 0.0001)
def test_createdct_invalid_input():
"""
Feature: CreateDct
Description: Error detection
Expectation: return error
"""
def test_invalid_input(test_name, n_mfcc, n_mels, norm, error, error_msg):
logger.info("Test CreateDct with bad input: {0}".format(test_name))
with pytest.raises(error) as error_info:
audio.CreateDct(n_mfcc, n_mels, norm)
assert error_msg in str(error_info.value)
test_invalid_input("invalid n_mfcc parameter type as a float", 100.5, 200, audio.NormMode.NONE, TypeError,
"n_mfcc with value 100.5 is not of type <class 'int'>, but got <class 'float'>.")
test_invalid_input("invalid n_mfcc parameter type as a String", "100", 200, audio.NormMode.NONE, TypeError,
"n_mfcc with value 100 is not of type <class 'int'>, but got <class 'str'>.")
test_invalid_input("invalid n_mels parameter type as a String", 100, "200", audio.NormMode.NONE, TypeError,
"n_mels with value 200 is not of type <class 'int'>, but got <class 'str'>.")
test_invalid_input("invalid n_mels parameter type as a String", 0, 200, audio.NormMode.NONE, ValueError,
"n_mfcc must be greater than 0, but got 0.")
test_invalid_input("invalid n_mels parameter type as a String", 100, 0, audio.NormMode.NONE, ValueError,
"n_mels must be greater than 0, but got 0.")
test_invalid_input("invalid n_mels parameter type as a String", -100, 200, audio.NormMode.NONE, ValueError,
"n_mfcc must be greater than 0, but got -100.")
test_invalid_input("invalid n_mfcc parameter value", None, 100, audio.NormMode.NONE, TypeError,
"n_mfcc with value None is not of type <class 'int'>, but got <class 'NoneType'>.")
test_invalid_input("invalid n_mels parameter value", 100, None, audio.NormMode.NONE, TypeError,
"n_mels with value None is not of type <class 'int'>, but got <class 'NoneType'>.")
test_invalid_input("invalid n_mels parameter value", 100, 200, "None", TypeError,
"norm with value None is not of type <enum 'NormMode'>, but got <class 'str'>.")
if __name__ == "__main__":
test_create_dct_none()
test_create_dct_ortho()
test_createdct_invalid_input()