forked from mindspore-Ecosystem/mindspore
!21306 Add gpu testcase and skip decorator.
Merge pull request !21306 from gaoyong10/runtime_002
This commit is contained in:
commit
4eca597368
|
@ -127,11 +127,6 @@ void CompileGraph::AddInput(const AnfNodePtr &node) {
|
|||
MS_LOG(DEBUG) << "Input node is null " << node->DebugString(true);
|
||||
(void)Ref(node);
|
||||
return;
|
||||
} else if (node->isa<ValueNode>()) {
|
||||
// Value node maybe reused in different graph or by different nodes,copy the value node to ensure stack correct.
|
||||
auto copy_value_node = NewValueNode(node->cast<ValueNodePtr>()->value());
|
||||
(void)Ref(copy_value_node);
|
||||
return;
|
||||
}
|
||||
AddInst(Instruction::kInput, Ref(node));
|
||||
set_height(height_ + 1);
|
||||
|
@ -393,6 +388,13 @@ int64_t CompileGraph::AddCall(const FuncGraphPtr &graph, const CNodePtr &node) {
|
|||
MS_LOG(DEBUG) << "Call:" << Ref(fn) << ", " << height_ << ", " << (size - 1);
|
||||
AddInst(Instruction::kCall, Ref(fn));
|
||||
Ret(static_cast<int64_t>(size - 1));
|
||||
|
||||
for (size_t i = size - 1; i > 0; i--) {
|
||||
const auto iter = slots_.find(inputs[i]);
|
||||
if (iter != slots_.end() && iter->second >= height_) {
|
||||
slots_.erase(inputs[i]);
|
||||
}
|
||||
}
|
||||
return RET_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -165,7 +166,7 @@ def test_single_for_03():
|
|||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_single_for_04():
|
||||
class SingleForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import composite as C
|
||||
|
@ -143,11 +144,13 @@ def test_if_in_if():
|
|||
control_flow_if_in_if(IfInIfNet, x)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_if_in_if_01():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_in_if(IfInIfNet1, x)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_if_in_if_02():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_in_if(IfInIfNet2, x)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
|
@ -52,6 +53,7 @@ class BackwardNet(nn.Cell):
|
|||
return grads
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_forward():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
@ -66,6 +68,7 @@ def test_forward():
|
|||
assert graph_mode_out == pynative_mode_out
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_backward():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -21,7 +22,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
context.set_context(device_target="GPU")
|
||||
|
||||
|
||||
def test_for_in_for_01():
|
||||
|
@ -76,7 +77,9 @@ def test_for_in_for_01():
|
|||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_for_in_for_02():
|
||||
class ForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
|
@ -73,6 +74,7 @@ def test_forward():
|
|||
assert graph_mode_out == pynative_mode_out
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_backward():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import composite as C
|
||||
|
@ -19,7 +20,7 @@ from mindspore.common import dtype as mstype
|
|||
from mindspore.common.parameter import Parameter
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
context.set_context(device_target="GPU")
|
||||
|
||||
|
||||
class IfAfterIfInIfNet(nn.Cell):
|
||||
|
@ -145,22 +146,27 @@ def control_flow_if_after_if_in_if(input_net, x):
|
|||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_if_after_if_in_if():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_after_if_in_if(IfAfterIfInIfNet, x)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_if_after_if_in_if_01():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_after_if_in_if(IfAfterIfInIfNet1, x)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_if_after_if_in_if_02():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_after_if_in_if(IfAfterIfInIfNet2, x)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_if_after_if_in_if_03():
|
||||
x = Tensor(2, mstype.int32)
|
||||
control_flow_if_after_if_in_if(IfAfterIfInIfNet3, x)
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +22,7 @@ from mindspore.ops import composite as C
|
|||
from mindspore import context
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
|
||||
|
||||
|
||||
class ForwardNet(nn.Cell):
|
||||
|
@ -73,6 +74,7 @@ def test_forward():
|
|||
assert graph_mode_out == pynative_mode_out
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_backward():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
@ -122,6 +124,9 @@ class BackwardNetNoAssign(nn.Cell):
|
|||
|
||||
|
||||
# This test case has a problem of evaluator endless loop.
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_backward_no_assign():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +22,7 @@ from mindspore.ops import composite as C
|
|||
from mindspore import context
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
|
||||
|
||||
|
||||
class ForwardNet(nn.Cell):
|
||||
|
@ -69,6 +70,7 @@ def test_forward():
|
|||
assert graph_mode_out == pynative_mode_out
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_backward():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
|
@ -83,3 +85,52 @@ def test_backward():
|
|||
pynative_backward_net = BackwardNet(pynative_forward_net)
|
||||
pynative_mode_grads = pynative_backward_net(x, y)
|
||||
assert graph_mode_grads == pynative_mode_grads
|
||||
|
||||
|
||||
class ForwardNetNoAssign(nn.Cell):
|
||||
def __init__(self, max_cycles=10):
|
||||
super(ForwardNetNoAssign, self).__init__()
|
||||
self.max_cycles = max_cycles
|
||||
self.zero = Tensor(np.array(0), mstype.int32)
|
||||
self.weight = Parameter(Tensor(np.array(0), mstype.int32))
|
||||
|
||||
def construct(self, x, y):
|
||||
out = self.zero
|
||||
for _ in range(0, self.max_cycles):
|
||||
while x < y:
|
||||
out = x * y + out
|
||||
x = x + 1
|
||||
#self.weight = x
|
||||
if out > 20:
|
||||
self.weight = out
|
||||
out = out - 20
|
||||
return out, self.weight
|
||||
|
||||
class BackwardNetNoAssign(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(BackwardNetNoAssign, self).__init__(auto_prefix=False)
|
||||
self.forward_net = net
|
||||
self.grad = C.GradOperation(get_all=True)
|
||||
|
||||
def construct(self, *inputs):
|
||||
grads = self.grad(self.forward_net)(*inputs)
|
||||
return grads
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_backward_no_assign():
|
||||
x = Tensor(np.array(1), mstype.int32)
|
||||
y = Tensor(np.array(3), mstype.int32)
|
||||
# Graph Mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
graph_forward_net = ForwardNetNoAssign(max_cycles=3)
|
||||
graph_backward_net = BackwardNetNoAssign(graph_forward_net)
|
||||
graph_mode_grads = graph_backward_net(x, y)
|
||||
# Pynative Mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
pynative_forward_net = ForwardNetNoAssign(max_cycles=3)
|
||||
pynative_backward_net = BackwardNetNoAssign(pynative_forward_net)
|
||||
pynative_mode_grads = pynative_backward_net(x, y)
|
||||
assert graph_mode_grads == pynative_mode_grads
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import composite as C
|
||||
|
@ -21,6 +22,7 @@ from mindspore.common.parameter import Parameter
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
@pytest.mark.skip(reason="not supported side effect")
|
||||
def test_for_after_for_in_if():
|
||||
class ForAfterForInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
Loading…
Reference in New Issue