Add GPU NCCL ci test cases.

This commit is contained in:
ZPaC 2020-04-16 09:56:43 +08:00
parent 7d406e8e6c
commit 4cd237eee4
4 changed files with 47 additions and 4 deletions

View File

@ -0,0 +1,44 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import pytest
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_lenet():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py")
assert(return_code == 0)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_all_reduce_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py")
assert(return_code == 0)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_all_gather_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py")
assert(return_code == 0)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_reduce_scatter_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_reduce_scatter_op.py")
assert(return_code == 0)

View File

@ -20,7 +20,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU', enable_dynamic_memory=False)
init('nccl')
rank = get_rank()

View File

@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
init('nccl')
epoch = 2
total = 50000
total = 5000
batch_size = 32
mini_batch = total // batch_size
@ -94,3 +94,4 @@ def test_lenet_nccl():
with open("ms_loss.txt", "w") as fo2:
fo2.write("loss:")
fo2.write(str(losses[-5:]))
assert(losses[-1] < 0.01)

View File

@ -62,8 +62,6 @@ def test_ReduceScatter():
expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size
diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
print(expect1)
print(output[1])
assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)