forked from mindspore-Ecosystem/mindspore
modify export script for ssd and yolov4
This commit is contained in:
parent
de60d1d98f
commit
4ca41ef89e
|
@ -333,11 +333,10 @@ mAP: 0.2244936111705981
|
|||
|
||||
## [Export MindIR](#contents)
|
||||
|
||||
Change the export mode and export file in `src/config.py`, and run `export.py`.
|
||||
|
||||
```
|
||||
python export.py --run_platform [PLATFORM] --checkpoint_path [CKPT_PATH]
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
```
|
||||
The ckpt_file parameter is required.
|
||||
|
||||
# [Model Description](#contents)
|
||||
## [Performance](#contents)
|
||||
|
|
|
@ -12,29 +12,37 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
ssd export mindir.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
|
||||
from src.ssd import SSD300, ssd_mobilenet_v2
|
||||
|
||||
import mindspore
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
from src.ssd import SSD300, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn
|
||||
from src.config import config
|
||||
|
||||
def get_export_args():
|
||||
parser = argparse.ArgumentParser(description='SSD export')
|
||||
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
|
||||
help="run platform, support Ascend, GPU and CPU.")
|
||||
return parser.parse_args()
|
||||
parser = argparse.ArgumentParser(description='SSD export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--file_name", type=str, default="ssd.air", help="output file name.")
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
|
||||
|
||||
if __name__ == '__main__':
|
||||
args_opt = get_export_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform)
|
||||
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
|
||||
if config.model == "ssd300":
|
||||
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
|
||||
else:
|
||||
net = ssd_mobilenet_v1_fpn(config=config)
|
||||
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
net.init_parameters_data()
|
||||
load_param_into_net(net, param_dict)
|
||||
input_shp = [1, 3] + config.img_shape
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
export(net, input_array, file_name=config.export_file, file_format=config.export_format)
|
||||
net.set_train(False)
|
||||
|
||||
input_shp = [args.batch_size, 3] + config.img_shape
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mindspore.float32)
|
||||
export(net, input_array, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -78,7 +78,5 @@ config = ed({
|
|||
"voc_root": "/data/voc_dataset",
|
||||
# if coco or voc used, `image_dir` and `anno_path` are useless.
|
||||
"image_dir": "",
|
||||
"anno_path": "",
|
||||
"export_format": "MINDIR",
|
||||
"export_file": "ssd.mindir"
|
||||
"anno_path": ""
|
||||
})
|
||||
|
|
|
@ -82,7 +82,5 @@ config = ed({
|
|||
"voc_root": "/data/voc_dataset",
|
||||
# if coco or voc used, `image_dir` and `anno_path` are useless.
|
||||
"image_dir": "",
|
||||
"anno_path": "",
|
||||
"export_format": "MINDIR",
|
||||
"export_file": "ssd.mindir"
|
||||
"anno_path": ""
|
||||
})
|
||||
|
|
|
@ -12,54 +12,35 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Convert ckpt to air."""
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
|
||||
|
||||
from src.yolo import YOLOV4CspDarkNet53
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
|
||||
|
||||
def save_air():
|
||||
"""Save mindir file"""
|
||||
print('============= YOLOV4 start save air ==================')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Convert ckpt to air')
|
||||
parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
|
||||
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
|
||||
|
||||
args = parser.parse_args()
|
||||
network = YOLOV4CspDarkNet53(is_training=False)
|
||||
input_shape = Tensor(tuple([416, 416]), mindspore.float32)
|
||||
if os.path.isfile(args.pretrained):
|
||||
param_dict = load_checkpoint(args.pretrained)
|
||||
param_dict_new = {}
|
||||
for key, values in param_dict.items():
|
||||
if key.startswith('moments.'):
|
||||
continue
|
||||
elif key.startswith('yolo_network.'):
|
||||
param_dict_new[key[13:]] = values
|
||||
|
||||
else:
|
||||
param_dict_new[key] = values
|
||||
|
||||
load_param_into_net(network, param_dict_new)
|
||||
print('load model {} success'.format(args.pretrained))
|
||||
|
||||
input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 416, 416)).astype(np.float32)
|
||||
|
||||
tensor_input_data = Tensor(input_data)
|
||||
export(network, tensor_input_data, input_shape, file_name='yolov4.air', file_format='AIR')
|
||||
|
||||
print("export model success.")
|
||||
parser = argparse.ArgumentParser(description='yolov4 export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--testing_shape", type=int, default=608, help="test shape")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--file_name", type=str, default="ssd.air", help="output file name.")
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
|
||||
|
||||
if __name__ == "__main__":
|
||||
save_air()
|
||||
ts_shape = args.testing_shape
|
||||
|
||||
network = YOLOV4CspDarkNet53(is_training=False)
|
||||
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(network, param_dict)
|
||||
|
||||
input_shape = Tensor(tuple([ts_shape, ts_shape]), mindspore.float32)
|
||||
input_data = Tensor(np.zeros([args.batch_size, 3, ts_shape, ts_shape]), mindspore.float32)
|
||||
|
||||
export(network, input_data, input_shape, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
Loading…
Reference in New Issue