[feat] [assistant] [I3CKEE] add new audio operator ComputeDeltas

This commit is contained in:
zhuchuang 2021-11-18 17:18:43 +08:00
parent f593f6f95a
commit 4c3931f5c9
18 changed files with 738 additions and 14 deletions

View File

@ -25,6 +25,7 @@
#include "minddata/dataset/audio/ir/kernels/bass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/complex_norm_ir.h"
#include "minddata/dataset/audio/ir/kernels/compute_deltas_ir.h"
#include "minddata/dataset/audio/ir/kernels/contrast_ir.h"
#include "minddata/dataset/audio/ir/kernels/db_to_amplitude_ir.h"
#include "minddata/dataset/audio/ir/kernels/dc_shift_ir.h"
@ -187,6 +188,20 @@ ComplexNorm::ComplexNorm(float power) : data_(std::make_shared<Data>(power)) {}
std::shared_ptr<TensorOperation> ComplexNorm::Parse() { return std::make_shared<ComplexNormOperation>(data_->power_); }
// ComputeDeltas Transform Operation.
struct ComputeDeltas::Data {
Data(int32_t win_length, BorderType pad_mode) : win_length_(win_length), pad_mode_(pad_mode) {}
int32_t win_length_;
BorderType pad_mode_;
};
ComputeDeltas::ComputeDeltas(int32_t win_length, BorderType pad_mode)
: data_(std::make_shared<Data>(win_length, pad_mode)) {}
std::shared_ptr<TensorOperation> ComputeDeltas::Parse() {
return std::make_shared<ComputeDeltasOperation>(data_->win_length_, data_->pad_mode_);
}
// Contrast Transform Operation.
struct Contrast::Data {
explicit Data(float enhancement_amount) : enhancement_amount_(enhancement_amount) {}

View File

@ -29,6 +29,7 @@
#include "minddata/dataset/audio/ir/kernels/bass_biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/biquad_ir.h"
#include "minddata/dataset/audio/ir/kernels/complex_norm_ir.h"
#include "minddata/dataset/audio/ir/kernels/compute_deltas_ir.h"
#include "minddata/dataset/audio/ir/kernels/contrast_ir.h"
#include "minddata/dataset/audio/ir/kernels/db_to_amplitude_ir.h"
#include "minddata/dataset/audio/ir/kernels/dc_shift_ir.h"
@ -161,6 +162,17 @@ PYBIND_REGISTER(
}));
}));
PYBIND_REGISTER(
ComputeDeltasOperation, 1, ([](const py::module *m) {
(void)py::class_<audio::ComputeDeltasOperation, TensorOperation, std::shared_ptr<audio::ComputeDeltasOperation>>(
*m, "ComputeDeltasOperation")
.def(py::init([](int32_t win_length, BorderType pad_mode) {
auto compute_deltas = std::make_shared<audio::ComputeDeltasOperation>(win_length, pad_mode);
THROW_IF_ERROR(compute_deltas->ValidateParams());
return compute_deltas;
}));
}));
PYBIND_REGISTER(ContrastOperation, 1, ([](const py::module *m) {
(void)
py::class_<audio::ContrastOperation, TensorOperation, std::shared_ptr<audio::ContrastOperation>>(

View File

@ -11,6 +11,7 @@ add_library(audio-ir-kernels OBJECT
bass_biquad_ir.cc
biquad_ir.cc
complex_norm_ir.cc
compute_deltas_ir.cc
contrast_ir.cc
db_to_amplitude_ir.cc
dc_shift_ir.cc

View File

@ -0,0 +1,51 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/audio/ir/kernels/compute_deltas_ir.h"
#include "minddata/dataset/audio/ir/validators.h"
#include "minddata/dataset/audio/kernels/compute_deltas_op.h"
namespace mindspore {
namespace dataset {
namespace audio {
ComputeDeltasOperation::ComputeDeltasOperation(int32_t win_length, BorderType pad_mode)
: win_length_(win_length), pad_mode_(pad_mode) {}
std::shared_ptr<TensorOp> ComputeDeltasOperation::Build() {
return std::make_shared<ComputeDeltasOp>(win_length_, pad_mode_);
}
Status ComputeDeltasOperation::to_json(nlohmann::json *out_json) {
nlohmann::json args;
args["win_length"] = win_length_;
args["pad_mode"] = pad_mode_;
*out_json = args;
return Status::OK();
}
Status ComputeDeltasOperation::ValidateParams() {
RETURN_IF_NOT_OK(ValidateScalar("ComputeDeltas", "win_length", win_length_, {3}, false));
if (pad_mode_ != BorderType::kConstant && pad_mode_ != BorderType::kEdge && pad_mode_ != BorderType::kReflect &&
pad_mode_ != BorderType::kSymmetric) {
std::string err_msg = "ComputeDeltas: invalid BorderType, please check input value of enum.";
LOG_AND_RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
} // namespace audio
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,52 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_COMPUTE_DELTAS_IR_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_COMPUTE_DELTAS_IR_H_
#include <memory>
#include <string>
#include <vector>
#include "include/api/status.h"
#include "minddata/dataset/kernels/ir/tensor_operation.h"
namespace mindspore {
namespace dataset {
namespace audio {
constexpr char kComputeDeltasOperation[] = "ComputeDeltas";
class ComputeDeltasOperation : public TensorOperation {
public:
ComputeDeltasOperation(int32_t win_length, BorderType pad_mode);
~ComputeDeltasOperation() = default;
std::shared_ptr<TensorOp> Build() override;
Status ValidateParams() override;
std::string Name() const override { return kComputeDeltasOperation; }
Status to_json(nlohmann::json *out_json) override;
private:
int32_t win_length_;
BorderType pad_mode_;
};
} // namespace audio
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_COMPUTE_DELTAS_IR_H_

View File

@ -12,6 +12,7 @@ add_library(audio-kernels OBJECT
bass_biquad_op.cc
biquad_op.cc
complex_norm_op.cc
compute_deltas_op.cc
contrast_op.cc
db_to_amplitude_op.cc
dc_shift_op.cc

View File

@ -1063,5 +1063,147 @@ Status SlidingWindowCmn(const std::shared_ptr<Tensor> &input, std::shared_ptr<Te
}
return Status::OK();
}
template <typename T>
Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t pad_left, int32_t pad_right,
BorderType padding_mode, T value = 0) {
CHECK_FAIL_RETURN_UNEXPECTED(input->shape().Size() >= 2, "Pad: input tensor is not in shape of <..., time>.");
CHECK_FAIL_RETURN_UNEXPECTED(
input->type().IsNumeric(),
"Pad: input tensor type should be int, float or double, but got: " + input->type().ToString());
CHECK_FAIL_RETURN_UNEXPECTED(pad_left >= 0 && pad_right >= 0,
"Pad: left and right padding values must be non negative, but got pad_left: " +
std::to_string(pad_left) + " and pad_right: " + std::to_string(pad_right));
TensorShape input_shape = input->shape();
int32_t wave_length = input_shape[-1];
int32_t num_wavs = static_cast<int32_t>(input->Size() / wave_length);
TensorShape to_shape = TensorShape({num_wavs, wave_length});
RETURN_IF_NOT_OK(input->Reshape(to_shape));
int32_t pad_length = wave_length + pad_left + pad_right;
TensorShape new_shape = TensorShape({num_wavs, pad_length});
RETURN_IF_NOT_OK(Tensor::CreateEmpty(new_shape, input->type(), output));
using MatrixXT = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using Eigen::Map;
constexpr int pad_mul = 2;
T *input_data = reinterpret_cast<T *>(const_cast<uchar *>(input->GetBuffer()));
T *output_data = reinterpret_cast<T *>(const_cast<uchar *>((*output)->GetBuffer()));
auto input_map = Map<MatrixXT>(input_data, num_wavs, wave_length);
auto output_map = Map<MatrixXT>(output_data, num_wavs, pad_length);
output_map.block(0, pad_left, num_wavs, wave_length) = input_map;
if (padding_mode == BorderType::kConstant) {
output_map.block(0, 0, num_wavs, pad_left).setConstant(value);
output_map.block(0, pad_left + wave_length, num_wavs, pad_right).setConstant(value);
} else if (padding_mode == BorderType::kEdge) {
output_map.block(0, 0, num_wavs, pad_left).colwise() = input_map.col(0);
output_map.block(0, pad_left + wave_length, num_wavs, pad_right).colwise() = input_map.col(wave_length - 1);
} else if (padding_mode == BorderType::kReflect) {
// First, deal with the pad operation on the right.
int32_t current_pad = wave_length - 1;
while (pad_right >= current_pad) {
// current_pad: the length of pad required for current loop.
// pad_right: the length of the remaining pad on the right.
output_map.block(0, pad_left + current_pad + 1, num_wavs, current_pad) =
output_map.block(0, pad_left, num_wavs, current_pad).rowwise().reverse();
pad_right -= current_pad;
current_pad += current_pad;
}
output_map.block(0, pad_length - pad_right, num_wavs, pad_right) =
output_map.block(0, pad_length - pad_right * pad_mul - 1, num_wavs, pad_right).rowwise().reverse();
// Next, deal with the pad operation on the left.
current_pad = wave_length - 1;
while (pad_left >= current_pad) {
// current_pad: the length of pad required for current loop.
// pad_left: the length of the remaining pad on the left.
output_map.block(0, pad_left - current_pad, num_wavs, current_pad) =
output_map.block(0, pad_left + 1, num_wavs, current_pad).rowwise().reverse();
pad_left -= current_pad;
current_pad += current_pad;
}
output_map.block(0, 0, num_wavs, pad_left) =
output_map.block(0, pad_left + 1, num_wavs, pad_left).rowwise().reverse();
} else if (padding_mode == BorderType::kSymmetric) {
// First, deal with the pad operation on the right.
int32_t current_pad = wave_length;
while (pad_right >= current_pad) {
// current_pad: the length of pad required for current loop.
// pad_right: the length of the remaining pad on the right.
output_map.block(0, pad_left + current_pad, num_wavs, current_pad) =
output_map.block(0, pad_left, num_wavs, current_pad).rowwise().reverse();
pad_right -= current_pad;
current_pad += current_pad;
}
output_map.block(0, pad_length - pad_right, num_wavs, pad_right) =
output_map.block(0, pad_length - pad_right * pad_mul, num_wavs, pad_right).rowwise().reverse();
// Next, deal with the pad operation on the left.
current_pad = wave_length;
while (pad_left >= current_pad) {
// current_pad: the length of pad required for current loop.
// pad_left: the length of the remaining pad on the left.
output_map.block(0, pad_left - current_pad, num_wavs, current_pad) =
output_map.block(0, pad_left, num_wavs, current_pad).rowwise().reverse();
pad_left -= current_pad;
current_pad += current_pad;
}
output_map.block(0, 0, num_wavs, pad_left) = output_map.block(0, pad_left, num_wavs, pad_left).rowwise().reverse();
} else {
RETURN_STATUS_UNEXPECTED("Pad: unsupported border type.");
}
std::vector<dsize_t> shape_vec = input_shape.AsVector();
shape_vec[shape_vec.size() - 1] = static_cast<dsize_t>(pad_length);
TensorShape output_shape(shape_vec);
RETURN_IF_NOT_OK((*output)->Reshape(output_shape));
return Status::OK();
}
template <typename T>
Status ComputeDeltasImpl(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int all_freqs,
int n_frame, int n) {
using VectorXT = Eigen::Matrix<T, Eigen::Dynamic, 1>;
using MatrixXT = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using Eigen::Map;
int32_t denom = n * (n + 1) * (n * 2 + 1) / 3;
// twice sum of integer squared
VectorXT kernel = VectorXT::LinSpaced(2 * n + 1, -n, n); // 2n+1
T *input_data = reinterpret_cast<T *>(const_cast<uchar *>(input->GetBuffer())); // [all_freq,n_fram+2n]
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape{all_freqs, n_frame}, input->type(), output));
T *output_data = reinterpret_cast<T *>(const_cast<uchar *>((*output)->GetBuffer()));
for (int freq = 0; freq < all_freqs; ++freq) { // conv with im2col
auto input_map = Map<MatrixXT, 0, Eigen::OuterStride<1>>(input_data + freq * (n_frame + 2 * n), n_frame,
2 * n + 1); // n_frmae,2n+1
Map<VectorXT>(output_data + freq * n_frame, n_frame) = (input_map * kernel).array() / T(denom);
}
return Status::OK();
}
Status ComputeDeltas(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t win_length,
const BorderType &mode) {
constexpr int min_shape_dim = 2;
auto raw_shape = input->shape();
CHECK_FAIL_RETURN_UNEXPECTED(raw_shape.Size() >= min_shape_dim,
"ComputeDeltas: input tensor is not in shape of <..., freq, time>.");
CHECK_FAIL_RETURN_UNEXPECTED(
input->type().IsNumeric(),
"ComputeDeltas: input tensor type should be int, float or double, but got: " + input->type().ToString());
// reshape Tensor from <..., freq, time> to <-1, time>
int32_t n_frames = raw_shape[-1];
int32_t all_freqs = raw_shape.NumOfElements() / n_frames;
RETURN_IF_NOT_OK(input->Reshape(TensorShape{all_freqs, n_frames}));
int32_t n = (win_length - 1) / 2;
std::shared_ptr<Tensor> specgram_local_pad;
if (input->type() == DataType(DataType::DE_FLOAT64)) {
RETURN_IF_NOT_OK(Pad<double>(input, &specgram_local_pad, n, n, mode));
RETURN_IF_NOT_OK(ComputeDeltasImpl<double>(specgram_local_pad, output, all_freqs, n_frames, n));
} else {
std::shared_ptr<Tensor> float_tensor;
RETURN_IF_NOT_OK(TypeCast(input, &float_tensor, DataType(DataType::DE_FLOAT32)));
RETURN_IF_NOT_OK(Pad<float>(float_tensor, &specgram_local_pad, n, n, mode));
RETURN_IF_NOT_OK(ComputeDeltasImpl<float>(specgram_local_pad, output, all_freqs, n_frames, n));
}
RETURN_IF_NOT_OK((*output)->Reshape(raw_shape));
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -1030,6 +1030,14 @@ Status ReadWaveFile(const std::string &wav_file_dir, std::vector<float> *wavefor
/// \return Status code.
Status SlidingWindowCmn(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t cmn_window,
int32_t min_cmn_window, bool center, bool norm_vars);
/// \brief Compute delta coefficients of a tensor, usually a spectrogram.
/// \param input: Tensor of shape <...,freq,time>.
/// \param output: Tensor of shape <...,freq,time>.
/// \param win_length: The window length used for computing delta.
/// \param mode: Padding mode.
/// \return Status code.
Status ComputeDeltas(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t win_length,
const BorderType &mode);
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_AUDIO_UTILS_H_

View File

@ -0,0 +1,44 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/audio/kernels/compute_deltas_op.h"
#include "minddata/dataset/audio/kernels/audio_utils.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
ComputeDeltasOp::ComputeDeltasOp(int32_t win_length, BorderType mode) : win_length_(win_length), mode_(mode) {}
Status ComputeDeltasOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
return ComputeDeltas(input, output, win_length_, mode_);
}
Status ComputeDeltasOp::OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) {
RETURN_IF_NOT_OK(TensorOp::OutputType(inputs, outputs));
if (!inputs[0].IsNumeric()) {
RETURN_STATUS_UNEXPECTED("ComputeDeltas: input tensor type should be int, float or double, but got: " +
inputs[0].ToString());
} else if (inputs[0] == DataType(DataType::DE_FLOAT64)) {
outputs[0] = DataType(DataType::DE_FLOAT64);
} else {
outputs[0] = DataType(DataType::DE_FLOAT32);
}
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,49 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_COMPUTE_DELTAS_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_COMPUTE_DELTAS_OP_H_
#include <memory>
#include <string>
#include <vector>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/dataset/constants.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
class ComputeDeltasOp : public TensorOp {
public:
explicit ComputeDeltasOp(int32_t win_length = 5, BorderType mode = BorderType::kEdge);
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
Status OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) override;
std::string Name() const override { return kComputeDeltasOp; };
~ComputeDeltasOp() = default;
private:
int32_t win_length_;
BorderType mode_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_COMPUTE_DELTAS_OP_H_

View File

@ -236,6 +236,28 @@ class ComplexNorm final : public TensorTransform {
std::shared_ptr<Data> data_;
};
/// \brief ComputeDeltas Transform.
/// \note Compute delta coefficients of a spectrogram.
class ComputeDeltas final : public TensorTransform {
public:
/// \brief Construct a new Compute Deltas object.
/// \param[in] win_length The window length used for computing delta, must be no less than 3 (Default: 5).
/// \param[in] pad_mode Mode parameter passed to padding (Default: BorderType::kEdge).
explicit ComputeDeltas(int32_t win_length = 5, BorderType pad_mode = BorderType::kEdge);
/// \brief Destructor.
~ComputeDeltas() = default;
protected:
/// \brief Function to convert TensorTransform object into a TensorOperation object.
/// \return Shared pointer to TensorOperation object.
std::shared_ptr<TensorOperation> Parse() override;
private:
struct Data;
std::shared_ptr<Data> data_;
};
/// \brief Apply contrast effect.
class Contrast final : public TensorTransform {
public:

View File

@ -153,6 +153,7 @@ constexpr char kBandrejectBiquadOp[] = "BandrejectBiquadOp";
constexpr char kBassBiquadOp[] = "BassBiquadOp";
constexpr char kBiquadOp[] = "BiquadOp";
constexpr char kComplexNormOp[] = "ComplexNormOp";
constexpr char kComputeDeltasOp[] = "ComputeDeltasOp";
constexpr char kContrastOp[] = "ContrastOp";
constexpr char kDBToAmplitudeOp[] = " DBToAmplitudeOp";
constexpr char kDCShiftOp[] = "DCShiftOp";

View File

@ -23,13 +23,13 @@ import numpy as np
import mindspore._c_dataengine as cde
from ..transforms.c_transforms import TensorOperation
from .utils import FadeShape, GainType, Interpolation, Modulation, ScaleType
from .utils import BorderType, FadeShape, GainType, Interpolation, Modulation, ScaleType
from .validators import check_allpass_biquad, check_amplitude_to_db, check_band_biquad, check_bandpass_biquad, \
check_bandreject_biquad, check_bass_biquad, check_biquad, check_complex_norm, check_contrast, \
check_db_to_amplitude, check_dc_shift, check_deemph_biquad, check_detect_pitch_frequency, check_equalizer_biquad, \
check_fade, check_flanger, check_highpass_biquad, check_lfilter, check_lowpass_biquad, check_magphase, \
check_masking, check_mu_law_coding, check_overdrive, check_phaser, check_riaa_biquad, check_sliding_window_cmn, \
check_time_stretch, check_treble_biquad, check_vol
check_bandreject_biquad, check_bass_biquad, check_biquad, check_complex_norm, check_compute_deltas, \
check_contrast, check_db_to_amplitude, check_dc_shift, check_deemph_biquad, check_detect_pitch_frequency, \
check_equalizer_biquad, check_fade, check_flanger, check_highpass_biquad, check_lfilter, check_lowpass_biquad, \
check_magphase, check_masking, check_mu_law_coding, check_overdrive, check_phaser, check_riaa_biquad, \
check_sliding_window_cmn, check_time_stretch, check_treble_biquad, check_vol
class AudioTensorOperation(TensorOperation):
@ -305,6 +305,51 @@ class ComplexNorm(AudioTensorOperation):
return cde.ComplexNormOperation(self.power)
DE_C_BORDER_TYPE = {
BorderType.CONSTANT: cde.BorderType.DE_BORDER_CONSTANT,
BorderType.EDGE: cde.BorderType.DE_BORDER_EDGE,
BorderType.REFLECT: cde.BorderType.DE_BORDER_REFLECT,
BorderType.SYMMETRIC: cde.BorderType.DE_BORDER_SYMMETRIC,
}
class ComputeDeltas(AudioTensorOperation):
"""
Compute delta coefficients of a spectrogram.
Args:
win_length (int): The window length used for computing delta, must be no less than 3 (default=5).
mode (BorderType): Mode parameter passed to padding (default=BorderType.EDGE).It can be any of
[BorderType.CONSTANT, BorderType.EDGE, BorderType.REFLECT, BordBorderTypeer.SYMMETRIC].
- BorderType.CONSTANT, means it fills the border with constant values.
- BorderType.EDGE, means it pads with the last value on the edge.
- BorderType.REFLECT, means it reflects the values on the edge omitting the last
value of edge.
- BorderType.SYMMETRIC, means it reflects the values on the edge repeating the last
value of edge.
Examples:
>>> import numpy as np
>>>
>>> waveform = np.random.random([1, 400//2+1, 30])
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
>>> transforms = [audio.ComputeDeltas(win_length=7, pad_mode = BorderType.EDGE)]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
"""
@check_compute_deltas
def __init__(self, win_length=5, pad_mode=BorderType.EDGE):
self.win_len = win_length
self.pad_mode = pad_mode
def parse(self):
return cde.ComputeDeltasOperation(self.win_len, DE_C_BORDER_TYPE[self.pad_mode])
class Contrast(AudioTensorOperation):
"""
Apply contrast effect. Similar to SoX implementation.

View File

@ -141,3 +141,23 @@ def CreateDct(n_mfcc, n_mels, norm=NormMode.NONE):
if n_mels <= 0:
raise ValueError("n_mels must be greater than 0, but got {0}.".format(n_mels))
return cde.CreateDct(n_mfcc, n_mels, DE_C_NORMMODE_TYPE[norm]).as_array()
class BorderType(str, Enum):
"""
Padding Mode, BorderType Type.
Possible enumeration values are: BorderType.CONSTANT, BorderType.EDGE, BorderType.REFLECT, BorderType.SYMMETRIC.
- BorderType.CONSTANT: means it fills the border with constant values.
- BorderType.EDGE: means it pads with the last value on the edge.
- BorderType.REFLECT: means it reflects the values on the edge omitting the last value of edge.
- BorderType.SYMMETRIC: means it reflects the values on the edge repeating the last value of edge.
Note: This class derived from class str to support json serializable.
"""
CONSTANT: str = "constant"
EDGE: str = "edge"
REFLECT: str = "reflect"
SYMMETRIC: str = "symmetric"

View File

@ -20,8 +20,8 @@ from functools import wraps
from mindspore.dataset.core.validator_helpers import check_float32, check_float32_not_zero, check_int32,\
check_int32_not_zero, check_list_same_size, check_non_negative_float32, check_non_negative_int32, \
check_pos_float32, check_pos_int32, check_value, parse_user_args, type_check
from .utils import FadeShape, GainType, Interpolation, Modulation, ScaleType
check_pos_float32, check_pos_int32, check_value, INT32_MAX, parse_user_args, type_check
from .utils import BorderType, FadeShape, GainType, Interpolation, Modulation, ScaleType
def check_amplitude_to_db(method):
@ -576,3 +576,16 @@ def check_sliding_window_cmn(method):
return method(self, *args, **kwargs)
return new_method
def check_compute_deltas(method):
"""Wrapper method to check the parameter of ComputeDeltas."""
@wraps(method)
def new_method(self, *args, **kwargs):
[win_length, pad_mode], _ = parse_user_args(method, *args, **kwargs)
type_check(pad_mode, (BorderType,), "pad_mode")
type_check(win_length, (int,), "win_length")
check_value(win_length, (3, INT32_MAX), "win_length")
return method(self, *args, **kwargs)
return new_method

View File

@ -1957,3 +1957,66 @@ TEST_F(MindDataTestPipeline, TestDBToAmplitudePipeline) {
iter->Stop();
}
/// Feature: ComputeDeltas
/// Description: test basic function of ComputeDeltas
/// Expectation: get correct number of data
TEST_F(MindDataTestPipeline, TestComputeDeltas) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestComputeDeltas.";
// Original waveform
std::shared_ptr<SchemaObj> schema = Schema();
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {2, 200}));
std::shared_ptr<Dataset> ds = RandomData(50, schema);
EXPECT_NE(ds, nullptr);
ds = ds->SetNumWorkers(4);
EXPECT_NE(ds, nullptr);
auto compute_deltas_op = audio::ComputeDeltas();
ds = ds->Map({compute_deltas_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(ds, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
std::vector<int64_t> expected = {2, 200};
int i = 0;
while (row.size() != 0) {
auto col = row["inputData"];
ASSERT_EQ(col.Shape(), expected);
ASSERT_EQ(col.Shape().size(), 2);
ASSERT_EQ(col.DataType(), mindspore::DataType::kNumberTypeFloat32);
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
EXPECT_EQ(i, 50);
iter->Stop();
}
/// Feature: ComputeDeltas
/// Description: test wrong input args of ComputeDeltas
/// Expectation: get nullptr of iterator
TEST_F(MindDataTestPipeline, TestComputeDeltasWrongArgs) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestComputeDeltasWrongArgs.";
// Original waveform
std::shared_ptr<SchemaObj> schema = Schema();
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {2, 200}));
std::shared_ptr<Dataset> ds = RandomData(50, schema);
EXPECT_NE(ds, nullptr);
ds = ds->SetNumWorkers(4);
EXPECT_NE(ds, nullptr);
auto compute_deltas_op = audio::ComputeDeltas(2, mindspore::dataset::BorderType::kEdge);
ds = ds->Map({compute_deltas_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure
EXPECT_EQ(iter, nullptr);
}

View File

@ -177,6 +177,57 @@ TEST_F(MindDataTestExecute, TestComposeTransforms) {
EXPECT_EQ(30, image.Shape()[1]);
}
/// Feature: ComputeDeltas
/// Description: test basic function of ComputeDeltas
/// Expectation: get correct number of data
TEST_F(MindDataTestExecute, TestComputeDeltas) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestComputeDeltas.";
std::shared_ptr<Tensor> input_tensor_;
int win_length = 5;
// create tensor
TensorShape s = TensorShape({2, 15, 7});
// init input vec
std::vector<float> input_vec(s.NumOfElements());
for (int ind = 0; ind < input_vec.size(); ind++) {
input_vec[ind] = std::rand() % (1000) / (1000.0f);
}
ASSERT_OK(Tensor::CreateFromVector(input_vec, s, &input_tensor_));
auto input_ms = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input_tensor_));
std::shared_ptr<TensorTransform> compute_deltas_op = std::make_shared<audio::ComputeDeltas>(win_length);
// apply compute_deltas
mindspore::dataset::Execute Transform({compute_deltas_op});
Status status = Transform(input_ms, &input_ms);
EXPECT_TRUE(status.IsOk());
}
/// Feature: ComputeDeltas
/// Description: test wrong input args of ComputeDeltas
/// Expectation: get nullptr of iterator
TEST_F(MindDataTestExecute, TestComputeDeltasWrongArgs) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestComputeDeltasWrongArgs.";
std::shared_ptr<Tensor> input_tensor_;
// win_length is less than minimum of 3
int win_length = 2;
// create tensor
TensorShape s = TensorShape({2, 15, 7});
// init input vec
std::vector<float> input_vec(s.NumOfElements());
for (int ind = 0; ind < input_vec.size(); ind++) {
input_vec[ind] = std::rand() % (1000) / (1000.0f);
}
ASSERT_OK(Tensor::CreateFromVector(input_vec, s, &input_tensor_));
auto input_ms = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input_tensor_));
std::shared_ptr<TensorTransform> compute_deltas_op = std::make_shared<audio::ComputeDeltas>(win_length);
mindspore::dataset::Execute Transform({compute_deltas_op});
Status status = Transform(input_ms, &input_ms);
EXPECT_FALSE(status.IsOk());
}
TEST_F(MindDataTestExecute, TestCrop) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestCrop.";
@ -937,12 +988,9 @@ TEST_F(MindDataTestExecute, TestOverdriveBasicWithEager) {
/// Expectation: throw exception correctly
TEST_F(MindDataTestExecute, TestOverdriveWrongArgWithEager) {
MS_LOG(INFO) << "Doing MindDataTestExecute-TestOverdriveWrongArgWithEager";
std::vector<double> labels = {
0.271, 1.634, 9.246, 0.108,
1.138, 1.156, 3.394, 1.55,
3.614, 1.8402, 0.718, 4.599,
5.64, 2.510620117187500000e-02, 1.38, 5.825,
4.1906, 5.28, 1.052, 9.36};
std::vector<double> labels = {0.271, 1.634, 9.246, 0.108, 1.138, 1.156, 3.394,
1.55, 3.614, 1.8402, 0.718, 4.599, 5.64, 2.510620117187500000e-02,
1.38, 5.825, 4.1906, 5.28, 1.052, 9.36};
std::shared_ptr<Tensor> input;
ASSERT_OK(Tensor::CreateFromVector(labels, TensorShape({4, 5}), &input));

View File

@ -0,0 +1,137 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing ComputeDeltas op in DE
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.audio.transforms as c_audio
from mindspore import log as logger
from mindspore.dataset.audio.utils import BorderType
CHANNEL = 1
FREQ = 20
TIME = 15
def gen(shape):
np.random.seed(0)
data = np.random.random(shape)
yield (np.array(data, dtype=np.float32),)
def count_unequal_element(data_expected, data_me, rtol, atol):
""" Precision calculation func """
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
data_expected[greater], data_me[greater], error[greater])
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
""" Precision calculation formula """
if np.any(np.isnan(data_expected)):
assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan)
elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan):
count_unequal_element(data_expected, data_me, rtol, atol)
def test_compute_deltas_eager():
"""
Feature: test the basic function in eager mode.
Description: mindspore eager mode normal testcase:compute_deltas op.
Expectation: compile done without error.
"""
logger.info("check compute_deltas op output")
ndarr_in = np.array([[[0.08746047, -0.33246294, 0.5240939, 0.6064913, -0.70366],
[1.1420338, 0.50532603, 0.73435473, -0.83435977, -1.0607501],
[-1.4298731, -0.86117035, -0.7773941, -0.60023546, 1.1807907],
[0.4973711, 0.5299286, 0.818514, 0.7559297, -0.3418539],
[-0.2824797, 0.30402678, 0.7848569, -0.4135576, 0.19522846],
[-0.11636204, -0.4780833, 1.2691815, 0.9824286, 0.029275],
[-1.2611166, -1.1957082, 0.26212585, 0.35354254, 0.3609486]]]).astype(np.float32)
out_expect = np.array([[[0.0453, 0.1475, -0.0643, -0.1970, -0.3766],
[-0.1452, -0.4360, -0.5745, -0.4927, -0.3817],
[0.1874, 0.2312, 0.5482, 0.6042, 0.5697],
[0.0675, 0.0838, -0.1452, -0.2904, -0.3419],
[0.2721, 0.0805, 0.0238, -0.0807, -0.0570],
[0.2409, 0.3583, 0.1752, -0.0225, -0.3433],
[0.3112, 0.4753, 0.4793, 0.3212, 0.0205]]]).astype(np.float32)
compute_deltas_op = c_audio.ComputeDeltas()
out_mindspore = compute_deltas_op(ndarr_in)
allclose_nparray(out_mindspore, out_expect, 0.0001, 0.0001)
def test_compute_deltas_pipeline():
"""
Feature: test the basic function in pipeline mode.
Description: mindspore pipeline mode normal testcase:compute_deltas op.
Expectation: compile done without error.
"""
logger.info("test ComputeDeltas op with default value")
generator = gen([CHANNEL, FREQ, TIME])
data1 = ds.GeneratorDataset(
source=generator, column_names=["multi_dimensional_data"]
)
transforms = [c_audio.ComputeDeltas()]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
assert out_put.shape == (CHANNEL, FREQ, TIME)
def test_compute_deltas_invalid_input():
"""
Feature: test the validate function with invalid parameters.
Description: mindspore invalid parameters testcase:compute_deltas op.
Expectation: compile done without error.
"""
def test_invalid_input(test_name, win_length, pad_mode, error, error_msg):
logger.info("Test ComputeDeltas with bad input: {0}".format(test_name))
with pytest.raises(error) as error_info:
c_audio.ComputeDeltas(win_length=win_length, pad_mode=pad_mode)
assert error_msg in str(error_info.value)
test_invalid_input(
"invalid win_length parameter value", "test", BorderType.EDGE, TypeError,
"Argument win_length with value test is not of type [<class 'int'>], but got <class 'str'>.",
)
test_invalid_input(
"invalid win_length parameter value", 2, BorderType.EDGE, ValueError,
"Input win_length is not within the required interval of [3, 2147483647]",
)
test_invalid_input(
"invalid pad_mode parameter value", 5, 2, TypeError,
"Argument pad_mode with value 2 is not of type [<enum 'BorderType'>], but got <class 'int'>.",
)
if __name__ == "__main__":
test_compute_deltas_eager()
test_compute_deltas_pipeline()
test_compute_deltas_invalid_input()