forked from mindspore-Ecosystem/mindspore
!1055 support vm for floor
Merge pull request !1055 from jiangjinsheng/vm_floor
This commit is contained in:
commit
4a8fcf5d76
|
@ -158,3 +158,4 @@ from .avg_pool_grad import _avg_pool_grad_tbe
|
|||
from .ones_like import _ones_like_tbe
|
||||
from .batch_to_space import _batch_to_space_tbe
|
||||
from .space_to_batch import _space_to_batch_tbe
|
||||
from .floor import _floor_tbe
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Floor op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
floor_op_info = TBERegOp("Floor") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("floor.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("floor") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(floor_op_info)
|
||||
def _floor_tbe():
|
||||
"""Floor TBE register"""
|
||||
return
|
|
@ -351,6 +351,15 @@ class AssignAdd(nn.Cell):
|
|||
self.inputdata = input_
|
||||
return self.op(self.inputdata, input_)
|
||||
|
||||
class FloorNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(FloorNet, self).__init__()
|
||||
self.floor = P.Floor()
|
||||
|
||||
def construct(self, x):
|
||||
return self.floor(x)
|
||||
|
||||
|
||||
test_case_math_ops = [
|
||||
('MatMulGrad', {
|
||||
'block': GradWrap(NetWithLoss(MatMulNet())),
|
||||
|
@ -391,6 +400,11 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('Floor', {
|
||||
'block': FloorNet(),
|
||||
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_math_ops]
|
||||
|
|
Loading…
Reference in New Issue