!1055 support vm for floor

Merge pull request !1055 from jiangjinsheng/vm_floor
This commit is contained in:
mindspore-ci-bot 2020-05-12 09:20:16 +08:00 committed by Gitee
commit 4a8fcf5d76
3 changed files with 51 additions and 0 deletions

View File

@ -158,3 +158,4 @@ from .avg_pool_grad import _avg_pool_grad_tbe
from .ones_like import _ones_like_tbe
from .batch_to_space import _batch_to_space_tbe
from .space_to_batch import _space_to_batch_tbe
from .floor import _floor_tbe

View File

@ -0,0 +1,36 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Floor op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
floor_op_info = TBERegOp("Floor") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("floor.so") \
.compute_cost(10) \
.kernel_name("floor") \
.partial_flag(True) \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(floor_op_info)
def _floor_tbe():
"""Floor TBE register"""
return

View File

@ -351,6 +351,15 @@ class AssignAdd(nn.Cell):
self.inputdata = input_
return self.op(self.inputdata, input_)
class FloorNet(nn.Cell):
def __init__(self):
super(FloorNet, self).__init__()
self.floor = P.Floor()
def construct(self, x):
return self.floor(x)
test_case_math_ops = [
('MatMulGrad', {
'block': GradWrap(NetWithLoss(MatMulNet())),
@ -391,6 +400,11 @@ test_case_math_ops = [
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'skip': ['backward']}),
('Floor', {
'block': FloorNet(),
'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))],
'skip': ['backward']}),
]
test_case_lists = [test_case_math_ops]