!23289 Add assignment operators and math operators tests

Merge pull request !23289 from Margaret_wangrui/expression
This commit is contained in:
i-robot 2021-09-14 01:06:13 +00:00 committed by Gitee
commit 479118500c
2 changed files with 1067 additions and 0 deletions

View File

@ -0,0 +1,480 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE)
class Assign(nn.Cell):
def __init__(self, x, y):
super(Assign, self).__init__()
self.x = Parameter(initializer(x, x.shape), name="x")
self.y = Parameter(initializer(y, y.shape), name="y")
self.assign = P.Assign()
def construct(self):
self.assign(self.y, self.x)
return self.y
def test_assign_bool():
x = Tensor(np.ones([3, 3]).astype(np.bool_))
y = Tensor(np.zeros([3, 3]).astype(np.bool_))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.bool_)
print(output)
assert np.all(output == output_expect)
def test_assign_int8():
x = Tensor(np.ones([3, 3]).astype(np.int8))
y = Tensor(np.zeros([3, 3]).astype(np.int8))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.int8)
print(output)
assert np.all(output == output_expect)
def test_assign_uint8():
x = Tensor(np.ones([3, 3]).astype(np.uint8))
y = Tensor(np.zeros([3, 3]).astype(np.uint8))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.uint8)
print(output)
assert np.all(output == output_expect)
def test_assign_int16():
x = Tensor(np.ones([3, 3]).astype(np.int16))
y = Tensor(np.zeros([3, 3]).astype(np.int16))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.int16)
print(output)
assert np.all(output == output_expect)
def test_assign_uint16():
x = Tensor(np.ones([3, 3]).astype(np.uint16))
y = Tensor(np.zeros([3, 3]).astype(np.uint16))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.uint16)
print(output)
assert np.all(output == output_expect)
def test_assign_int32():
x = Tensor(np.ones([3, 3]).astype(np.int32))
y = Tensor(np.zeros([3, 3]).astype(np.int32))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.int32)
print(output)
assert np.all(output == output_expect)
def test_assign_uint32():
x = Tensor(np.ones([3, 3]).astype(np.uint32))
y = Tensor(np.zeros([3, 3]).astype(np.uint32))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.uint32)
print(output)
assert np.all(output == output_expect)
def test_assign_int64():
x = Tensor(np.ones([3, 3]).astype(np.int64))
y = Tensor(np.zeros([3, 3]).astype(np.int64))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.int64)
print(output)
assert np.all(output == output_expect)
def test_assign_uint64():
x = Tensor(np.ones([3, 3]).astype(np.uint64))
y = Tensor(np.zeros([3, 3]).astype(np.uint64))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.ones([3, 3]).astype(np.uint64)
print(output)
assert np.all(output == output_expect)
def test_assign_float16():
x = Tensor(np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float16))
y = Tensor(np.array([[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8],
[0.1, 0.2, 0.3]]).astype(np.float16))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float16)
print(output)
assert np.all(output - output_expect < 1e-6)
def test_assign_float32():
x = Tensor(np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float32))
y = Tensor(np.array([[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8],
[0.1, 0.2, 0.3]]).astype(np.float32))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float32)
print(output)
assert np.all(output - output_expect < 1e-6)
def test_assign_float64():
x = Tensor(np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float64))
y = Tensor(np.array([[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8],
[0.1, 0.2, 0.3]]).astype(np.float64))
assign = Assign(x, y)
output = assign()
output = output.asnumpy()
output_expect = np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.5],
[0.6, 0.7, 0.8]]).astype(np.float64)
print(output)
assert np.all(output - output_expect < 1e-6)
class AssignAdd(nn.Cell):
def __init__(self, x, y):
super(AssignAdd, self).__init__()
self.x = Parameter(initializer(x, x.shape), name="x")
self.y = Parameter(initializer(y, y.shape), name="y")
self.assignadd = P.AssignAdd()
def construct(self):
self.assignadd(self.y, self.x)
return self.y
def test_number_assignadd_number():
input_x = 2
result1 = 5
result2 = 5
result1 += input_x
assignadd = AssignAdd(result2, input_x)
result2 = assignadd()
expect = 7
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_assignadd_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result1 = Tensor(np.array([[4, -2], [2, 17]]))
result2 = Tensor(np.array([[4, -2], [2, 17]]))
result1 += input_x
result2 = AssignAdd(result2, input_x)()
expect = Tensor(np.array([[6, 0], [5, 20]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_assignadd_number():
input_x = 3
result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result1 += input_x
result2 = AssignAdd(result2, input_x)()
expect = Tensor(np.array([[7, 1], [5, 20]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_number_assignadd_tensor():
result1 = 3
result2 = 3
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result1 += input_x
result2 = AssignAdd(result2, input_x)()
expect = Tensor(np.array([[7, 1], [5, 20]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tuple_assignadd_tuple():
result1 = (1, 2, 3, 4)
result2 = (1, 2, 3, 4)
input_x = (2, 3, 4, 5, 6)
result1 += input_x
result2 = AssignAdd(result2, input_x)()
expect = (1, 2, 3, 4, 2, 3, 4, 5, 6)
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_string_assignadd_string():
result1 = "string111"
result2 = "string111"
input_x = "string222"
result1 += input_x
result2 = AssignAdd(result2, input_x)()
expect = "string111string222"
assert result1 == expect
assert result2 == expect
class AssignSub(nn.Cell):
def __init__(self, x, y):
super(AssignSub, self).__init__()
self.x = Parameter(initializer(x, x.shape), name="x")
self.y = Parameter(initializer(y, y.shape), name="y")
self.assignsub = P.AssignSub()
def construct(self):
self.assignsub(self.y, self.x)
return self.y
def test_number_assignsub_number():
input_x = 2
result1 = 5
result2 = 5
result1 -= input_x
result2 = AssignSub(result2, input_x)()
expect = 3
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_assignsub_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result1 = Tensor(np.array([[4, -2], [2, 17]]))
result2 = Tensor(np.array([[4, -2], [2, 17]]))
result1 -= input_x
result2 = AssignSub(result2, input_x)()
expect = Tensor(np.array([[2, -4], [-1, 14]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_assignsub_number():
input_x = 3
result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result1 -= input_x
result2 = AssignSub(result2, input_x)()
expect = Tensor(np.array([[1, -5], [-1, 14]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_number_assignsub_tensor():
result1 = 3
result2 = 3
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result1 -= input_x
result2 = AssignSub(result2, input_x)()
expect = Tensor(np.array([[-1, 5], [1, -14]]))
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_number_assignmul_number():
input_x = 2
result = 5
result *= input_x
expect = 10
assert np.all(result == expect)
def test_tensor_assignmul_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result = Tensor(np.array([[4, -2], [2, 17]]))
result *= input_x
expect = Tensor(np.array([[8, -4], [6, 51]]))
assert np.all(result.asnumpy() == expect)
def test_tensor_assignmul_number():
input_x = 3
result = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result *= input_x
expect = Tensor(np.array([[12, -6], [6, 51]]))
assert np.all(result.asnumpy() == expect)
def test_number_assignmul_tensor():
result = 3
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
result *= input_x
expect = Tensor(np.array([[12, -6], [6, 51]]))
assert np.all(result.asnumpy() == expect)
def test_number_assigndiv_number():
input_x = 2
result = 5
result /= input_x
expect = 2.5
assert np.all(result == expect)
def test_tensor_assigndiv_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result = Tensor(np.array([[4, -2], [6, 15]]))
result /= input_x
expect = Tensor(np.array([[2, -1], [2, 5]]))
assert np.all(result.asnumpy() == expect)
def test_tensor_assigndiv_number():
input_x = 3
result = Tensor(np.array([[9, -3], [6, 15]])).astype(np.float16)
result /= input_x
expect = Tensor(np.array([[3, -1], [2, 5]]))
assert np.all(result.asnumpy() == expect)
def test_number_assigndiv_tensor():
result = 3
input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16)
result /= input_x
expect = Tensor(np.array([[1.5, -1.5], [1.5, -1.5]]))
assert np.all(result.asnumpy() == expect)
def test_number_assignmod_number():
input_x = 2
result = 5
result %= input_x
expect = 1
assert np.all(result == expect)
def test_tensor_assignmod_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result = Tensor(np.array([[4, -2], [6, 15]]))
result %= input_x
expect = Tensor(np.array([[0, 0], [0, 0]]))
assert np.all(result.asnumpy() == expect)
def test_tensor_assignmod_number():
input_x = 3
result = Tensor(np.array([[9, -3], [7, 15]])).astype(np.float16)
result %= input_x
expect = Tensor(np.array([[0, 0], [1, 0]]))
assert np.all(result.asnumpy() == expect)
def test_number_assignmod_tensor():
result = 3
input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16)
result %= input_x
expect = Tensor(np.array([[1, -1], [1, -1]]))
assert np.all(result.asnumpy() == expect)
def test_number_assignmulmul_number():
input_x = 2
result = 5
result **= input_x
expect = 25
assert np.all(result == expect)
def test_tensor_assignmulmul_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result = Tensor(np.array([[4, -2], [6, 5]]))
result **= input_x
expect = Tensor(np.array([[16, 4], [216, 125]]))
assert np.all(result.asnumpy() == expect)
def test_tensor_assignmulmul_number():
input_x = 3
result = Tensor(np.array([[9, -3], [7, 5]])).astype(np.float16)
result **= input_x
expect = Tensor(np.array([[729, -27], [343, 125]]))
assert np.all(result.asnumpy() == expect)
def test_number_assignmulmul_tensor():
result = 3
input_x = Tensor(np.array([[2, 2], [2, 2]])).astype(np.float16)
result **= input_x
expect = Tensor(np.array([[9, 9], [9, 9]]))
assert np.all(result.asnumpy() == expect)
def test_number_assigndivdiv_number():
input_x = 2
result = 5
result //= input_x
expect = 2
assert np.all(result == expect)
def test_tensor_assigndivdiv_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
result = Tensor(np.array([[4, -2], [6, 6]]))
result //= input_x
expect = Tensor(np.array([[2, -1], [2, 2]]))
assert np.all(result.asnumpy() == expect)
def test_tensor_assigndivdiv_number():
input_x = 3
result = Tensor(np.array([[9, -3], [15, 9]])).astype(np.float16)
result //= input_x
expect = Tensor(np.array([[3, -1], [5, 3]]))
assert np.all(result.asnumpy() == expect)
def test_number_assigndivdiv_tensor():
result = 3
input_x = Tensor(np.array([[1, 2], [2, 2]])).astype(np.float16)
result //= input_x
expect = Tensor(np.array([[3, 1], [1, 1]]))
assert np.all(result.asnumpy() == expect)

View File

@ -0,0 +1,587 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test math ops """
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE)
class Add(nn.Cell):
def __init__(self):
super(Add, self).__init__()
self.add = P.Add()
def construct(self, x, y):
z = self.add(x, y)
return z
def test_number_add_number():
input_x = 0.1
input_y = -3.2
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = -3.1
assert result1 == expect
assert result2 == expect
def test_tensor_add_tensor_int8():
input_x = Tensor(np.ones(shape=[3])).astype(np.int8)
input_y = Tensor(np.zeros(shape=[3])).astype(np.int8)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_int16():
input_x = Tensor(np.ones(shape=[3])).astype(np.int16)
input_y = Tensor(np.zeros(shape=[3])).astype(np.int16)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_int32():
input_x = Tensor(np.ones(shape=[3])).astype(np.int32)
input_y = Tensor(np.zeros(shape=[3])).astype(np.int32)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_int64():
input_x = Tensor(np.ones(shape=[3])).astype(np.int64)
input_y = Tensor(np.zeros(shape=[3])).astype(np.int64)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_uint8():
input_x = Tensor(np.ones(shape=[3])).astype(np.uint8)
input_y = Tensor(np.zeros(shape=[3])).astype(np.uint8)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_uint16():
input_x = Tensor(np.ones(shape=[3])).astype(np.uint16)
input_y = Tensor(np.zeros(shape=[3])).astype(np.uint16)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_uint32():
input_x = Tensor(np.ones(shape=[3])).astype(np.uint32)
input_y = Tensor(np.zeros(shape=[3])).astype(np.uint32)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_uint64():
input_x = Tensor(np.ones(shape=[3])).astype(np.uint64)
input_y = Tensor(np.zeros(shape=[3])).astype(np.uint64)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_float16():
input_x = Tensor(np.ones(shape=[3])).astype(np.float16)
input_y = Tensor(np.zeros(shape=[3])).astype(np.float16)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_float32():
input_x = Tensor(np.ones(shape=[3])).astype(np.float32)
input_y = Tensor(np.zeros(shape=[3])).astype(np.float32)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_tensor_float64():
input_x = Tensor(np.ones(shape=[3])).astype(np.float64)
input_y = Tensor(np.zeros(shape=[3])).astype(np.float64)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3])
assert np.all(result1.asnumpy() == expect)
assert np.all(result2.asnumpy() == expect)
def test_tensor_add_number():
input_x = Tensor(np.ones(shape=[3])).astype(np.float32)
input_y = -0.4
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = np.ones(shape=[3]) * 0.6
assert np.all(result1.asnumpy() == expect.astype(np.float32))
assert np.all(result2.asnumpy() == expect.astype(np.float32))
def test_tuple_add_tuple():
input_x = (Tensor(np.ones(shape=[3])).astype(np.float32))
input_y = (Tensor(np.ones(shape=[3])).astype(np.float32) * 2)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = (np.ones(shape=[3]) * 3)
assert np.all(result1.asnumpy() == expect.astype(np.float32))
assert np.all(result2.asnumpy() == expect.astype(np.float32))
def test_tuple_add_tuple_shape():
input_x = (Tensor(np.ones(shape=[3])).astype(np.float32))
input_y = (Tensor(np.ones(shape=[4])).astype(np.float32) * 2)
result1 = input_x + input_y
add_net = Add()
result2 = add_net(input_x, input_y)
expect = (np.ones(shape=[3]) * 3)
assert np.all(result1.asnumpy() == expect.astype(np.float32))
assert np.all(result2.asnumpy() == expect.astype(np.float32))
def test_string_add_string():
input_x = "string111_"
input_y = "add_string222"
result = input_x + input_y
expect = "string111_add_string222"
assert result == expect
def test_list_add_list():
input_x = [1, 3, 5, 7, 9]
input_y = ["0", "6"]
result = input_x + input_y
expect = [1, 3, 5, 7, 9, "0", "6"]
assert result == expect
class Sub(nn.Cell):
def __init__(self):
super(Sub, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
z = self.sub(x, y)
return z
def test_number_sub_number():
input_x = 10.11
input_y = 902
result1 = input_x - input_y
sub_net = Sub()
result2 = sub_net(input_x, input_y)
expect = -891.89
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_sub_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
input_y = Tensor(np.array([[1, 2], [-3, 3]]))
result1 = input_x - input_y
sub_net = Sub()
result2 = sub_net(input_x, input_y)
expect = Tensor(np.array([[1, 0], [6, 0]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_sub_number():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
input_y = -2
result1 = input_x - input_y
sub_net = Sub()
result2 = sub_net(input_x, input_y)
expect = Tensor(np.array([[4, 4], [5, 5]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_sub_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]]))
input_y = -2
result1 = input_x - input_y
sub_net = Sub()
result2 = sub_net(input_x, input_y)
expect = Tensor(np.array([[-4, -4], [-5, -5]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
self.mul = P.Mul()
def construct(self, x, y):
z = self.mul(x, y)
return z
def test_number_mul_number():
input_x = 4.91
input_y = 0.16
result1 = input_x * input_y
mul_net = Mul()
result2 = mul_net(input_x, input_y)
expect = 0.7856
diff1 = result1 - expect
diff2 = result2 - expect
error = 1.0e-6
assert np.all(diff1 < error)
assert np.all(-diff1 < error)
assert np.all(diff2 < error)
assert np.all(-diff2 < error)
def test_tensor_mul_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]])).astype(np.float32)
input_y = Tensor(np.array([[1, 2], [3, 1]])).astype(np.float32)
result1 = input_x * input_y
mul_net = Mul()
result2 = mul_net(input_x, input_y)
expect = Tensor(np.array([[2, 4], [9, 3]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_mul_number():
input_x = Tensor(np.array([[2, 2], [3, 3]])).astype(np.float32)
input_y = -1
result1 = input_x * input_y
mul_net = Mul()
result2 = mul_net(input_x, input_y)
expect = Tensor(np.array([[-2, -2], [-3, -3]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_mul_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]])).astype(np.float32)
input_y = -1
result1 = input_x * input_y
mul_net = Mul()
result2 = mul_net(input_x, input_y)
expect = Tensor(np.array([[-2, -2], [-3, -3]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
class Div(nn.Cell):
def __init__(self):
super(Div, self).__init__()
self.div = P.Div()
def construct(self, x, y):
z = self.div(x, y)
return z
def test_number_div_number():
input_x = 4
input_y = -1
result1 = input_x / input_y
div_net = Div()
result2 = div_net(input_x, input_y)
expect = -4
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_div_tensor():
input_x = Tensor(np.array([[2, 2], [3, 3]])).astype(np.float32)
input_y = Tensor(np.array([[1, 2], [3, 1]])).astype(np.float32)
result1 = input_x / input_y
div_net = Div()
result2 = div_net(input_x, input_y)
expect = Tensor(np.array([[2, 1], [1, 3]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_div_number():
input_x = Tensor(np.array([[2, 2], [3, 3]])).astype(np.float32)
input_y = 2
result1 = input_x / input_y
div_net = Div()
result2 = div_net(input_x, input_y)
expect = Tensor(np.array([[1, 1], [1.5, 1.5]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_div_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 2
result1 = input_x / input_y
div_net = Div()
result2 = div_net(input_x, input_y)
expect = Tensor(np.array([[1, 1], [0.5, 0.5]]))
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
class Mod(nn.Cell):
def __init__(self):
super(Mod, self).__init__()
self.mod = P.Mod()
def construct(self, x, y):
z = self.mod(x, y)
return z
def test_number_mod_number():
input_x = 19
input_y = 2
result1 = input_x % input_y
mod_net = Mod()
result2 = mod_net(input_x, input_y)
expect = 1
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_mod_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
result1 = input_x % input_y
mod_net = Mod()
result2 = mod_net(input_x, input_y)
expect = Tensor(np.array([[0, 0], [0, 0]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_mod_number():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = -1
result1 = input_x % input_y
mod_net = Mod()
result2 = mod_net(input_x, input_y)
expect = Tensor(np.array([[0, 0], [0, 0]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_mod_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 5
result1 = input_x % input_y
mod_net = Mod()
result2 = mod_net(input_x, input_y)
expect = Tensor(np.array([[1, 1], [1, 1]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
class Pow(nn.Cell):
def __init__(self):
super(Pow, self).__init__()
self.pow = P.Pow()
def construct(self, x, y):
z = self.pow(x, y)
return z
def test_number_pow_number():
input_x = 2
input_y = 5
result1 = input_x ** input_y
pow_net = Pow()
result2 = pow_net(input_x, input_y)
expect = 32
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_pow_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
result1 = input_x ** input_y
pow_net = Pow()
result2 = pow_net(input_x, input_y)
expect = Tensor(np.array([[4, 4], [256, 256]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_pow_number():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x ** input_y
pow_net = Pow()
result2 = pow_net(input_x, input_y)
expect = Tensor(np.array([[8, 8], [64, 64]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_pow_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x ** input_y
pow_net = Pow()
result2 = pow_net(input_x, input_y)
expect = Tensor(np.array([[9, 9], [81, 81]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
class FloorDiv(nn.Cell):
def __init__(self):
super(FloorDiv, self).__init__()
self.floordiv = P.FloorDiv()
def construct(self, x, y):
z = self.floordiv(x, y)
return z
def test_number_floordiv_number():
input_x = 2
input_y = 5
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = 0
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_floordiv_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = Tensor(np.array([[1, 2], [-2, 4]])).astype(np.float32)
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[2, 1], [-2, 1]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_floordiv_number():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[0, 0], [1, 1]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_floordiv_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[1, 1], [0, 0]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_floormod_number():
input_x = 2
input_y = 5
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = 2
assert np.all(result1 == expect)
assert np.all(result2 == expect)
def test_tensor_floormod_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = Tensor(np.array([[1, 2], [-2, 4]])).astype(np.float32)
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[1, 0], [-2, 0]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_tensor_floormod_number():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[2, 2], [1, 1]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())
def test_number_floormod_tensor():
input_x = Tensor(np.array([[2, 2], [4, 4]])).astype(np.float32)
input_y = 3
result1 = input_x // input_y
floordiv_net = FloorDiv()
result2 = floordiv_net(input_x, input_y)
expect = Tensor(np.array([[1, 1], [3, 3]])).astype(np.float32)
assert np.all(result1.asnumpy() == expect.asnumpy())
assert np.all(result2.asnumpy() == expect.asnumpy())