forked from mindspore-Ecosystem/mindspore
!6507 fix warning of reviewbot
Merge pull request !6507 from zhanghaibo/master
This commit is contained in:
commit
473b9614a7
|
@ -48,7 +48,7 @@ void backwardX(const float *in, const float *dout, const float *scale, const int
|
||||||
meanVar(in, size, channels, eps, mean, invar);
|
meanVar(in, size, channels, eps, mean, invar);
|
||||||
for (int i = 0; i < size; i++) {
|
for (int i = 0; i < size; i++) {
|
||||||
for (int f = 0; f < channels; f++) {
|
for (int f = 0; f < channels; f++) {
|
||||||
int ix = i*channels + f;
|
int ix = i * channels + f;
|
||||||
float x_hat = (in[ix] - mean[f]) * invar[f];
|
float x_hat = (in[ix] - mean[f]) * invar[f];
|
||||||
float dxhat = dout[ix] * scale[f];
|
float dxhat = dout[ix] * scale[f];
|
||||||
dxhat_sum[f] += dxhat;
|
dxhat_sum[f] += dxhat;
|
||||||
|
@ -57,7 +57,7 @@ void backwardX(const float *in, const float *dout, const float *scale, const int
|
||||||
}
|
}
|
||||||
for (int i = 0; i < size; i++) {
|
for (int i = 0; i < size; i++) {
|
||||||
for (int f = 0; f < channels; f++) {
|
for (int f = 0; f < channels; f++) {
|
||||||
int ix = i*channels + f;
|
int ix = i * channels + f;
|
||||||
float x_hat = (in[ix] - mean[f]) * invar[f];
|
float x_hat = (in[ix] - mean[f]) * invar[f];
|
||||||
float dxhat = dout[ix] * scale[f];
|
float dxhat = dout[ix] * scale[f];
|
||||||
out[ix] = 1.f / size * invar[f] * (size * dxhat - dxhat_sum[f] - x_hat * dxhathat_sum[f]);
|
out[ix] = 1.f / size * invar[f] * (size * dxhat - dxhat_sum[f] - x_hat * dxhathat_sum[f]);
|
||||||
|
|
|
@ -43,7 +43,7 @@ void MatrixTranspose(float *matrix, float *trans_matrix, int row, int col);
|
||||||
void MatrixMultiply(const float *matrix_a, const float *matrix_b, float *matrix_c, int m, int k, int n);
|
void MatrixMultiply(const float *matrix_a, const float *matrix_b, float *matrix_c, int m, int k, int n);
|
||||||
|
|
||||||
int CookToomFilter(float *matrix_a, float *matrix_at, float *matrix_b, float *matrix_bt, float *matrix_g,
|
int CookToomFilter(float *matrix_a, float *matrix_at, float *matrix_b, float *matrix_bt, float *matrix_g,
|
||||||
float *matrix_gt, float coefficient, int out_unit, int filter_size);
|
float *matrix_gt, float coefficient, int out_unit, int filter_size);
|
||||||
|
|
||||||
#ifdef ENABLE_ARM
|
#ifdef ENABLE_ARM
|
||||||
void MatrixMultiplyVec(const float32x4_t *matrix_a, const float32x4_t *matrix_b, float32x4_t *matrix_c,
|
void MatrixMultiplyVec(const float32x4_t *matrix_a, const float32x4_t *matrix_b, float32x4_t *matrix_c,
|
||||||
|
|
|
@ -37,7 +37,6 @@ class OptimizeModule {
|
||||||
#ifdef ENABLE_ARM64
|
#ifdef ENABLE_ARM64
|
||||||
int hwcap_type = 16;
|
int hwcap_type = 16;
|
||||||
uint32_t hwcap = getHwCap(hwcap_type);
|
uint32_t hwcap = getHwCap(hwcap_type);
|
||||||
|
|
||||||
if (hwcap & HWCAP_ASIMDDP) {
|
if (hwcap & HWCAP_ASIMDDP) {
|
||||||
MS_LOG(INFO) << "Hw cap support SMID Dot Product, hwcap: 0x" << hwcap;
|
MS_LOG(INFO) << "Hw cap support SMID Dot Product, hwcap: 0x" << hwcap;
|
||||||
support_optimize_ops = true;
|
support_optimize_ops = true;
|
||||||
|
@ -72,7 +71,6 @@ class Float16Module {
|
||||||
#ifdef ENABLE_ARM64
|
#ifdef ENABLE_ARM64
|
||||||
int hwcap_type = 16;
|
int hwcap_type = 16;
|
||||||
uint32_t hwcap = getHwCap(hwcap_type);
|
uint32_t hwcap = getHwCap(hwcap_type);
|
||||||
|
|
||||||
if (hwcap & HWCAP_FPHP) {
|
if (hwcap & HWCAP_FPHP) {
|
||||||
MS_LOG(INFO) << "Hw cap support FP16, hwcap: 0x" << hwcap;
|
MS_LOG(INFO) << "Hw cap support FP16, hwcap: 0x" << hwcap;
|
||||||
support_fp16 = true;
|
support_fp16 = true;
|
||||||
|
|
|
@ -80,6 +80,7 @@ int TimeProfiler::ReadInputFile() {
|
||||||
}
|
}
|
||||||
auto input_data = inTensor->MutableData();
|
auto input_data = inTensor->MutableData();
|
||||||
memcpy(input_data, bin_buf, tensor_data_size);
|
memcpy(input_data, bin_buf, tensor_data_size);
|
||||||
|
delete bin_buf;
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -104,15 +105,10 @@ int TimeProfiler::LoadInput() {
|
||||||
}
|
}
|
||||||
|
|
||||||
int TimeProfiler::InitSession() {
|
int TimeProfiler::InitSession() {
|
||||||
size_t size = 0;
|
ctx = new (std::nothrow) lite::Context;
|
||||||
char *graph_buf = ReadFile(_flags->model_path_.c_str(), &size);
|
if (ctx == nullptr) {
|
||||||
if (graph_buf == nullptr) {
|
|
||||||
MS_LOG(ERROR) << "Load graph failed, path " << _flags->model_path_;
|
|
||||||
std::cerr << "Load graph failed, path " << _flags->model_path_ << std::endl;
|
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto ctx = new lite::Context;
|
|
||||||
ctx->cpu_bind_mode_ = static_cast<CpuBindMode>(_flags->cpu_bind_mode_);
|
ctx->cpu_bind_mode_ = static_cast<CpuBindMode>(_flags->cpu_bind_mode_);
|
||||||
ctx->device_type_ = lite::DT_CPU;
|
ctx->device_type_ = lite::DT_CPU;
|
||||||
ctx->thread_num_ = _flags->num_threads_;
|
ctx->thread_num_ = _flags->num_threads_;
|
||||||
|
@ -239,7 +235,7 @@ int TimeProfiler::Init() {
|
||||||
}
|
}
|
||||||
|
|
||||||
int TimeProfiler::PrintResult(const std::vector<std::string> &title,
|
int TimeProfiler::PrintResult(const std::vector<std::string> &title,
|
||||||
const std::map<std::string, std::pair<int, float>> &result) {
|
const std::map<std::string, std::pair<int, float>> &result) {
|
||||||
std::vector<size_t> columnLenMax(5);
|
std::vector<size_t> columnLenMax(5);
|
||||||
std::vector<std::vector<std::string>> rows;
|
std::vector<std::vector<std::string>> rows;
|
||||||
|
|
||||||
|
|
|
@ -57,7 +57,11 @@ class MS_API TimeProfilerFlags : public virtual FlagParser {
|
||||||
class MS_API TimeProfiler {
|
class MS_API TimeProfiler {
|
||||||
public:
|
public:
|
||||||
explicit TimeProfiler(TimeProfilerFlags *flags) : _flags(flags) {}
|
explicit TimeProfiler(TimeProfilerFlags *flags) : _flags(flags) {}
|
||||||
~TimeProfiler() = default;
|
~TimeProfiler() {
|
||||||
|
if (ctx != nullptr) {
|
||||||
|
delete ctx;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
int Init();
|
int Init();
|
||||||
int RunTimeProfiler();
|
int RunTimeProfiler();
|
||||||
|
@ -72,6 +76,7 @@ class MS_API TimeProfiler {
|
||||||
int PrintResult(const std::vector<std::string> &title, const std::map<std::string, std::pair<int, float>> &result);
|
int PrintResult(const std::vector<std::string> &title, const std::map<std::string, std::pair<int, float>> &result);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
Context *ctx = nullptr;
|
||||||
TimeProfilerFlags *_flags;
|
TimeProfilerFlags *_flags;
|
||||||
std::vector<mindspore::tensor::MSTensor *> ms_inputs_;
|
std::vector<mindspore::tensor::MSTensor *> ms_inputs_;
|
||||||
session::LiteSession *session_;
|
session::LiteSession *session_;
|
||||||
|
|
Loading…
Reference in New Issue