forked from mindspore-Ecosystem/mindspore
implement parallel BroadcastTo
This commit is contained in:
parent
c1b9efe8e6
commit
45d373d40e
|
@ -172,6 +172,8 @@ using TransposeCost = ActivationCost;
|
|||
using TransposeCostPtr = std::shared_ptr<TransposeCost>;
|
||||
using StridedSliceCost = ActivationCost;
|
||||
using StridedSliceCostPtr = std::shared_ptr<StridedSliceCost>;
|
||||
using SplitCost = ActivationCost;
|
||||
using SplitCostPtr = std::shared_ptr<SplitCost>;
|
||||
|
||||
class SoftmaxCost : public OperatorCost {
|
||||
public:
|
||||
|
@ -203,8 +205,8 @@ using PackCost = TileCost;
|
|||
using PackCostPtr = std::shared_ptr<PackCost>;
|
||||
using ConcatCost = TileCost;
|
||||
using ConcatCostPtr = std::shared_ptr<ConcatCost>;
|
||||
using SplitCost = TileCost;
|
||||
using SplitCostPtr = std::shared_ptr<SplitCost>;
|
||||
using BroadcastToCost = SoftmaxCost;
|
||||
using BroadcastToCostPtr = std::shared_ptr<BroadcastToCost>;
|
||||
|
||||
class TmpIdentityCost : public OperatorCost {
|
||||
public:
|
||||
|
|
|
@ -176,6 +176,7 @@ REGISTER(SquareInfo);
|
|||
REGISTER(GatherV2PInfo);
|
||||
REGISTER(EmbeddingLookupInfo);
|
||||
REGISTER(TileInfo);
|
||||
REGISTER(BroadcastToInfo);
|
||||
REGISTER(StridedSliceInfo);
|
||||
REGISTER(DropoutInfo);
|
||||
REGISTER(PackInfo);
|
||||
|
|
|
@ -0,0 +1,265 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/broadcast_to_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
#include "pipeline/jit/resource.h"
|
||||
#include "frontend/parallel/graph_util/generate_graph.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
Status BroadcastToInfo::GetAttrs() {
|
||||
out_shape_.clear();
|
||||
auto shape_iter = attrs_.find(SHAPE);
|
||||
if (shape_iter != attrs_.end()) {
|
||||
MS_EXCEPTION_IF_NULL(shape_iter->second);
|
||||
auto var = shape_iter->second->cast<ValueTuplePtr>();
|
||||
if (var == nullptr) {
|
||||
MS_LOG(ERROR) << name_ << ": shape format is wrong! Need ValueSequeue";
|
||||
return FAILED;
|
||||
}
|
||||
for (auto &ele : var->value()) {
|
||||
if (!ele->isa<Int32Imm>()) {
|
||||
MS_LOG(ERROR) << name_ << ": The element of shape must be int";
|
||||
return FAILED;
|
||||
}
|
||||
out_shape_.push_back(static_cast<int64_t>(GetValue<int>(ele)));
|
||||
}
|
||||
} else {
|
||||
MS_LOG(ERROR) << name_ << ": Can not find the shape attr";
|
||||
return FAILED;
|
||||
}
|
||||
if (out_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": shape cannot be empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
MS_EXCEPTION_IF_NULL(strategy);
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
auto stra = strategy->GetInputDim().at(0);
|
||||
auto in_shape = inputs_shape_.at(0);
|
||||
for (size_t i = 0; i < stra.size(); ++i) {
|
||||
if ((in_shape[i] == 1) && (stra[i] != 1)) {
|
||||
MS_LOG(ERROR) << name_ << ": dimension with size 1 is not splitable.";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::InferDevMatrixShape() {
|
||||
MS_EXCEPTION_IF_NULL(strategy_);
|
||||
std::vector<Dimensions> stra = strategy_->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << "The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
dev_matrix_shape_ = stra[0];
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::InferTensorMap() {
|
||||
TensorMap in_tensor_map;
|
||||
TensorMap out_tensor_map;
|
||||
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << "The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
int32_t size = SizeToInt(inputs_shape_[0].size());
|
||||
for (int i = 0; i < size; ++i) {
|
||||
in_tensor_map.push_back(size - i - 1);
|
||||
}
|
||||
inputs_tensor_map_.push_back(in_tensor_map);
|
||||
|
||||
size_t len_diff = outputs_shape_.at(0).size() - inputs_shape_.at(0).size();
|
||||
for (size_t i = 0; i < len_diff; ++i) {
|
||||
out_tensor_map.push_back(MAP_NONE);
|
||||
}
|
||||
std::copy(in_tensor_map.begin(), in_tensor_map.end(), std::back_inserter(out_tensor_map));
|
||||
outputs_tensor_map_.push_back(out_tensor_map);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
if (inputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Shape input_tensor_map = inputs_tensor_map_[0];
|
||||
std::vector<Group> group;
|
||||
if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Create group for input failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (group.empty()) {
|
||||
MS_LOG(INFO) << name_ << ": The mirror group is empty.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
OperatorVector input_op;
|
||||
input_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
|
||||
mirror_ops_.push_back(input_op);
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorLayout input_layout, output_layout;
|
||||
// infer tensor layout
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
|
||||
|
||||
Status BroadcastToInfo::GenerateStrategies(int32_t stage_id) {
|
||||
if (InferAttrs() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
|
||||
return FAILED;
|
||||
}
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
Shape input_split;
|
||||
for (size_t i = 0; i < inputs_shape_[0].size(); ++i) {
|
||||
if (inputs_shape_[0][i] == 1) {
|
||||
input_split.push_back(0);
|
||||
} else {
|
||||
input_split.push_back(1);
|
||||
}
|
||||
}
|
||||
|
||||
// to generate the first input's strategy
|
||||
Shapes splittable_input = {input_split};
|
||||
Shapes tmp_inputs_shape = {inputs_shape_[0]};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// the others strategies are equal to the first input's strategy
|
||||
for (auto &sp : sp_vector) {
|
||||
if ((sp == nullptr) || sp->GetInputDim().empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is null or empty";
|
||||
return FAILED;
|
||||
}
|
||||
Strategys tmp_strategy;
|
||||
Dimensions first_input_strategy = sp->GetInputDim()[0];
|
||||
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
|
||||
tmp_strategy.push_back(first_input_strategy);
|
||||
}
|
||||
sp->ResetInputs(tmp_strategy);
|
||||
}
|
||||
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
PrintStrategy(sp);
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
||||
GenerateGraph gen_g = GenerateGraph();
|
||||
if (gen_g.Init(cnode) != SUCCESS) {
|
||||
MS_LOG(ERROR) << "GenerateGraph Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Shape to_shape = outputs_tensor_info_[0].slice_shape();
|
||||
Attr attr_shape = std::make_pair(SHAPE, MakeValue(to_shape));
|
||||
OperatorAttrs attrs = {attr_shape};
|
||||
auto new_broadcast_to = gen_g.PushBack({gen_g.NewOpInst(BROADCAST_TO, attrs), gen_g.virtual_input_node()});
|
||||
std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(new_broadcast_to, 1)};
|
||||
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>(
|
||||
std::make_pair(input_nodes, new_broadcast_to));
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
ReplaceGraphPtr BroadcastToInfo::replace_graph(const CNodePtr &cnode) {
|
||||
if (ComputeReplaceGraph(cnode) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed.";
|
||||
}
|
||||
return replace_graph_;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init failed.";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << ": Init success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status BroadcastToInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,64 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
/*
|
||||
* Limitation: Dimensions with size 1 can't be splited.
|
||||
*/
|
||||
class BroadcastToInfo : public OperatorInfo {
|
||||
public:
|
||||
BroadcastToInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<BroadcastToCost>(false)) {}
|
||||
~BroadcastToInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int32_t) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &) override;
|
||||
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
|
||||
|
||||
protected:
|
||||
Status GetAttrs() override;
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
Status ComputeReplaceGraph(const CNodePtr &cnode);
|
||||
|
||||
private:
|
||||
Shape out_shape_;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_
|
|
@ -42,5 +42,6 @@
|
|||
#include "frontend/parallel/ops_info/concat_info.h"
|
||||
#include "frontend/parallel/ops_info/split_info.h"
|
||||
#include "frontend/parallel/ops_info/pack_info.h"
|
||||
#include "frontend/parallel/ops_info/broadcast_to_info.h"
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_
|
||||
|
|
|
@ -222,6 +222,7 @@ constexpr char GATHERV2[] = "GatherV2";
|
|||
constexpr char SPARSE_GATHERV2[] = "SparseGatherV2";
|
||||
constexpr char STRIDEDSLICE[] = "StridedSlice";
|
||||
constexpr char BROADCAST[] = "Broadcast";
|
||||
constexpr char BROADCAST_TO[] = "BroadcastTo";
|
||||
constexpr char SQRT[] = "Sqrt";
|
||||
constexpr char ASSIGN[] = "Assign";
|
||||
constexpr char GET_NEXT[] = "GetNext";
|
||||
|
|
|
@ -265,7 +265,7 @@ bool IsSplittableOperator(const std::string &op_name) {
|
|||
LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT,
|
||||
STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT,
|
||||
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
|
||||
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT};
|
||||
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
|
|
|
@ -0,0 +1,112 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True):
|
||||
super(Net, self).__init__()
|
||||
self.shape = (8, 48, 64)
|
||||
self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
|
||||
self.mul = P.Mul().shard(strategy2)
|
||||
if is_parameter:
|
||||
self.weight1 = Parameter(weight1, "w1")
|
||||
else:
|
||||
self.weight1 = weight1
|
||||
|
||||
def construct(self, x):
|
||||
out = self.broadcast(self.weight1)
|
||||
out = self.mul(x, out)
|
||||
return out
|
||||
|
||||
|
||||
class MatMulNet(nn.Cell):
|
||||
def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True):
|
||||
super(MatMulNet, self).__init__()
|
||||
self.shape = (8, 64, 64)
|
||||
self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
|
||||
self.matmul = P.BatchMatMul().shard(strategy2)
|
||||
self.mul = P.Mul().shard(strategy3)
|
||||
if is_parameter:
|
||||
self.weight1 = Parameter(weight1, "w1")
|
||||
else:
|
||||
self.weight1 = weight1
|
||||
|
||||
def construct(self, x1, x2):
|
||||
out = self.broadcast(x2)
|
||||
out = self.matmul(x1, out)
|
||||
out = self.mul(out, self.weight1)
|
||||
return out
|
||||
|
||||
|
||||
_w1 = Tensor(np.ones([1, 48, 64]), dtype=ms.float32)
|
||||
_x1 = Tensor(np.ones([8, 48, 64]), dtype=ms.float32)
|
||||
_x2 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x1)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def compile_net2(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x1, _x2)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_BroadcastTo_parameter():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4, 2),)
|
||||
strategy2 = ((1, 4, 2), (1, 4, 2))
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_BroadcastTo_parameter_no_full():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 2, 2),)
|
||||
strategy2 = ((1, 4, 2), (1, 4, 2))
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_BroadcastTo_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net(_w1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_BroadcastTo_matmul():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((2, 4),)
|
||||
strategy2 = ((1, 1, 2), (1, 2, 4))
|
||||
strategy3 = ((1, 2, 4), (1, 2, 4))
|
||||
net = MatMulNet(_w1, strategy1, strategy2, strategy3)
|
||||
compile_net2(net)
|
Loading…
Reference in New Issue