forked from mindspore-Ecosystem/mindspore
added validation
fix ci fix ci fixed test cases and ci fixed test cases and ci
This commit is contained in:
parent
e6221008a1
commit
44bb9cb216
|
@ -45,6 +45,15 @@ __global__ void ValidateInputAndInferShape(const T *range_start, const T *range_
|
|||
|
||||
if (*error_code == DynamicRangeErrorCode::kOk) {
|
||||
int64_t real_output_shape = static_cast<int64_t>(ceil(static_cast<double>(end - start) / delta));
|
||||
|
||||
// verification in case of precision error during calculation of real_output_shape. one multiplication followed by
|
||||
// one addition is much more precise than the division that occurs when calculating real_output_shape.
|
||||
double last_value = start + (delta * (real_output_shape - 1));
|
||||
double epsilon = 1e-6;
|
||||
if ((end > start && last_value > end) || (start > end && last_value < end) || fabsf(last_value - end) < epsilon) {
|
||||
real_output_shape--;
|
||||
}
|
||||
|
||||
if (real_output_shape > max_output_size) {
|
||||
*error_code = DynamicRangeErrorCode::kMaxSizeExceeded;
|
||||
}
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
class RangeNet(nn.Cell):
|
||||
def __init__(self, maxlen=10000):
|
||||
def __init__(self, maxlen=50):
|
||||
super(RangeNet, self).__init__()
|
||||
self.range = P.Range(maxlen)
|
||||
|
||||
|
@ -30,6 +30,40 @@ class RangeNet(nn.Cell):
|
|||
return self.range(start, limit, delta)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_range_precision_end_equals_last_element():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
range_net = RangeNet(100)
|
||||
ms_out = range_net(Tensor(1000.04, mstype.float32),
|
||||
Tensor(1001.04, mstype.float32),
|
||||
Tensor(0.01, mstype.float32)).asnumpy()
|
||||
np_expected = np.arange(1000.04, 1001.04, 0.01, dtype=np.float32)
|
||||
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
||||
|
||||
range_net = RangeNet(1000)
|
||||
ms_out = range_net(Tensor(100, mstype.float32),
|
||||
Tensor(101, mstype.float32),
|
||||
Tensor(0.001, mstype.float32)).asnumpy()
|
||||
np_expected = np.arange(100, 101, 0.001, dtype=np.float32)
|
||||
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
||||
|
||||
range_net = RangeNet(799900)
|
||||
ms_out = range_net(Tensor(1, mstype.float32),
|
||||
Tensor(8000, mstype.float32),
|
||||
Tensor(0.01, mstype.float32)).asnumpy()
|
||||
np_expected = np.arange(1, 8000, 0.01, dtype=np.float32)
|
||||
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
||||
|
||||
range_net = RangeNet(53)
|
||||
ms_out = range_net(Tensor(-12000, mstype.float32),
|
||||
Tensor(-12053, mstype.float32),
|
||||
Tensor(-1, mstype.float32)).asnumpy()
|
||||
np_expected = np.arange(-12000, -12053, -1, dtype=np.float32)
|
||||
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -97,7 +131,7 @@ def test_range_invalid_max_output_length():
|
|||
@pytest.mark.env_onecard
|
||||
def test_range_invalid_input():
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
range_net = RangeNet(3500)
|
||||
range_net = RangeNet()
|
||||
_ = range_net(Tensor(0, mstype.int32), Tensor(5, mstype.int32), Tensor(0, mstype.int32)).asnumpy()
|
||||
assert "delta cannot be equal to zero" in str(info.value)
|
||||
|
||||
|
@ -107,11 +141,11 @@ def test_range_invalid_input():
|
|||
assert "number of elements in the output exceeds maxlen" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
range_net = RangeNet(3500)
|
||||
range_net = RangeNet()
|
||||
_ = range_net(Tensor(20, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
|
||||
assert "delta cannot be positive when limit < start" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
range_net = RangeNet(3500)
|
||||
range_net = RangeNet()
|
||||
_ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(-4, mstype.int32)).asnumpy()
|
||||
assert "delta cannot be negative when limit > start" in str(info.value)
|
||||
|
|
Loading…
Reference in New Issue