forked from mindspore-Ecosystem/mindspore
!23490 [assistant][ops] Add New Math Operator IsNan
Merge pull request !23490 from 孟权令/IsNan
This commit is contained in:
commit
418e1b425b
|
@ -0,0 +1,58 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#include "ops/is_nan.h"
|
||||||
|
#include "ops/op_utils.h"
|
||||||
|
#include "utils/check_convert_utils.h"
|
||||||
|
#include "abstract/primitive_infer_map.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace ops {
|
||||||
|
namespace {
|
||||||
|
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||||
|
MS_EXCEPTION_IF_NULL(primitive);
|
||||||
|
for (const auto &item : input_args) {
|
||||||
|
MS_EXCEPTION_IF_NULL(item);
|
||||||
|
}
|
||||||
|
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||||
|
return std::make_shared<abstract::Shape>(x_shape);
|
||||||
|
}
|
||||||
|
|
||||||
|
TypePtr InferType(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||||
|
for (const auto &item : input_args) {
|
||||||
|
MS_EXCEPTION_IF_NULL(item);
|
||||||
|
}
|
||||||
|
CheckAndConvertUtils::CheckTensorTypeValid(
|
||||||
|
"x", input_args[0]->BuildType(),
|
||||||
|
{kBool, kInt8, kInt16, kInt32, kInt64, kFloat16, kFloat32, kFloat64, kUInt8, kUInt16, kUInt32, kUInt64},
|
||||||
|
primitive->name());
|
||||||
|
return kBool;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
AbstractBasePtr IsNanInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||||
|
const std::vector<AbstractBasePtr> &input_args) {
|
||||||
|
MS_EXCEPTION_IF_NULL(primitive);
|
||||||
|
const int64_t input_num = 1;
|
||||||
|
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, primitive->name());
|
||||||
|
return abstract::MakeAbstract(InferShape(primitive, input_args), InferType(primitive, input_args));
|
||||||
|
}
|
||||||
|
REGISTER_PRIMITIVE_EVAL_IMPL(IsNan, prim::kPrimIsNan, IsNanInfer, nullptr, true);
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,42 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CORE_OPS_IS_NAN_H_
|
||||||
|
#define MINDSPORE_CORE_OPS_IS_NAN_H_
|
||||||
|
#include <vector>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "ops/primitive_c.h"
|
||||||
|
#include "ops/op_utils.h"
|
||||||
|
#include "abstract/abstract_value.h"
|
||||||
|
#include "utils/check_convert_utils.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace ops {
|
||||||
|
constexpr auto kNameIsNan = "IsNan";
|
||||||
|
class IsNan : public PrimitiveC {
|
||||||
|
public:
|
||||||
|
IsNan() : PrimitiveC(kNameIsNan) { InitIOName({"x"}, {"y"}); }
|
||||||
|
~IsNan() = default;
|
||||||
|
MS_DECLARE_PARENT(IsNan, PrimitiveC);
|
||||||
|
};
|
||||||
|
|
||||||
|
AbstractBasePtr IsNanInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||||
|
const std::vector<AbstractBasePtr> &input_args);
|
||||||
|
using PrimIsNanPtr = std::shared_ptr<IsNan>;
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CORE_OPS_IS_NAN_H_
|
|
@ -35,6 +35,7 @@ from .print_tensor import _print_aicpu
|
||||||
from .topk import _top_k_aicpu
|
from .topk import _top_k_aicpu
|
||||||
from .is_finite import _is_finite_aicpu
|
from .is_finite import _is_finite_aicpu
|
||||||
from .is_inf import _is_inf_aicpu
|
from .is_inf import _is_inf_aicpu
|
||||||
|
from .is_nan import _is_nan_aicpu
|
||||||
from .reshape import _reshape_aicpu
|
from .reshape import _reshape_aicpu
|
||||||
from .flatten import _flatten_aicpu
|
from .flatten import _flatten_aicpu
|
||||||
from .squeeze import _squeeze_aicpu
|
from .squeeze import _squeeze_aicpu
|
||||||
|
|
|
@ -0,0 +1,31 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""IsNan op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||||
|
|
||||||
|
is_nan_op_info = AiCPURegOp("IsNan") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.input(0, "x", "required") \
|
||||||
|
.output(0, "y", "required") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.BOOL_Default) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.BOOL_Default) \
|
||||||
|
.dtype_format(DataType.F64_Default, DataType.BOOL_Default) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
@op_info_register(is_nan_op_info)
|
||||||
|
def _is_nan_aicpu():
|
||||||
|
"""IsNan AiCPU register"""
|
||||||
|
return
|
|
@ -3974,7 +3974,7 @@ class LogicalOr(_LogicBinaryOp):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
class IsNan(PrimitiveWithInfer):
|
class IsNan(Primitive):
|
||||||
r"""
|
r"""
|
||||||
Determines which elements are NaN for each position.
|
Determines which elements are NaN for each position.
|
||||||
|
|
||||||
|
@ -4005,7 +4005,7 @@ class IsNan(PrimitiveWithInfer):
|
||||||
>>> x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
|
>>> x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
|
||||||
>>> output = is_nan(x)
|
>>> output = is_nan(x)
|
||||||
>>> print(output)
|
>>> print(output)
|
||||||
[True False False]
|
[ True False False]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
|
@ -4013,12 +4013,6 @@ class IsNan(PrimitiveWithInfer):
|
||||||
"""Initialize IsNan"""
|
"""Initialize IsNan"""
|
||||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
|
||||||
return x_shape
|
|
||||||
|
|
||||||
def infer_dtype(self, x_dtype):
|
|
||||||
return mstype.tensor_type(mstype.bool_)
|
|
||||||
|
|
||||||
|
|
||||||
class IsInf(Primitive):
|
class IsInf(Primitive):
|
||||||
r"""
|
r"""
|
||||||
|
|
|
@ -1183,6 +1183,11 @@ test_case_math_ops = [
|
||||||
'desc_inputs': [[2, 512, 56, 56]],
|
'desc_inputs': [[2, 512, 56, 56]],
|
||||||
'desc_bprop': [[2, 512, 56, 56]],
|
'desc_bprop': [[2, 512, 56, 56]],
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
|
('IsNan', {
|
||||||
|
'block': P.IsNan(),
|
||||||
|
'desc_inputs': [Tensor(np.array([np.log(-1), 1, np.log(0)]).astype(np.float32))],
|
||||||
|
'desc_bprop': [],
|
||||||
|
'skip': ['backward']}),
|
||||||
('InplaceAdd', {
|
('InplaceAdd', {
|
||||||
'block': InplaceAddNet(),
|
'block': InplaceAddNet(),
|
||||||
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
|
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
|
||||||
|
|
Loading…
Reference in New Issue